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Abstract—The increasing energy demand coupled with
emerging sustainability concerns requires a re-examination of
power/thermal issues in data centers from the perspective of
short term energy deficiencies. Such energy deficient scenarios
arise for a variety of reasons including variable energy supply
from renewable sources and inadequate power, thermal and
cooling capacities. In this paper we propose a hierarchical control
scheme to adapt assignments of tasks to servers in a way that
can cope with the varying energy limitations and still provide
necessary QoS . The rescheduling of tasks on different servers has
direct (migration related) and indirect (changed traffic patterns)
network energy impacts that we also consider. We show the
stability of our scheme and evaluate its performance via detailed
simulations and experiments.

I. INTRODUCTION

The rapid growth of data centers to support burgeoning
online services and cloud computing has led to data centers
accounting for an increasing amount of energy consumption
and hence an increasing environmental footprint. This has
resulted in intensive research efforts on reducing the data
center power consumption at all levels from energy efficient
hardware design all the way up to power, thermal and cooling
management of the entire data center. Much of this research
is focused on reducing the direct energy usage of the data
center, whereas from an environment impact perspective one
needs to consider the entire life-cycle of energy consumption
– that is, the energy consumption in the manufacture, distri-
bution, installation, operation and disposal of the entire data
center infrastructure including IT assets, power distribution
equipment, and cooling infrastructure.

Looking at energy consumption from this larger perspec-
tive entails not only low power consumption during oper-
ation but also “leaner” designs and operation using renew-
able energy as far as possible. A leaner design could take
many forms including smaller (i.e., lower capacity) power
supplies, heat-sinks and fans, ambient cooling which allows
the elimination of chiller plants, high-temperature operation,
under-engineering uninterrupted power supplies (UPS), under-
designed rack power circuits, etc. All these forms of lean
design increase the probability that the data center will be
occasionally under-powered and thus needs mechanisms to
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cope with it. The power deficiency could be either real or result
from the fact that limited cooling capabilities do not allow
adequate dissipation of power even if the power availability is
itself plentiful. The variability associated with the direct use
of renewable energy could result in similar power deficiencies.
The challenge is to adapt the data center operations to such
available power variations – as far as possible - while still
meeting the desired QoS requirements. We call this Energy
Adaptive Computing (EAC) [1]. In this paper, we propose
a hierarchical control scheme called Willow to cope with
energy deficiencies. It is assumed here that energy deficiencies
are temporary and infrequent, rather than persistent so that
their occurrence does not affect the long-term performance or
viability of the applications.

In general, we need adaptation to deal with both supply
side and demand side variations. The supply side variations
result both from the actual variations in energy supply and the
variations as a result of varying partitioning of available en-
ergy among various components. The demand side variations
(which themselves drive variability in partitioning) result from
variations in workload intensity and characteristics. It has been
noted that as the computing moves towards more real-time
data mining driven answers to user queries, the demand side
variations could become significantly more severe, thereby
further increasing the need for adaptation to available energy.

Willow migrates the workloads away from energy deficient
zones to energy surplus zones. Adaptation to the available
energy profile could take many forms. In cases of serious and
relatively long-lived energy deficiency, the only mechanism
to cope is to shut down low - priority tasks. In less severe
cases, the nature of the computation can be altered (e.g.,
reducing the resolution of video, use of coarser audio codecs,
or computation of answers to a lower precision). Often, energy
consumption can also be reduced via a latency-power tradeoff.
For example, consolidation of load on fewest number of
servers (without violating local power or thermal constraints)
can allow others to be shut down or put in deep sleep modes.
Similarly, batched processing is a well known mechanism for
creating longer busy and idle intervals and thereby improving
power management efficiency. Finally, local energy deficiency
can be dealt with by migration of load from energy deficient
areas to energy plenty areas of the data center. We allow
for all of these variations in our scheme, although we do
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not explicitly consider the treatment of low - priority tasks or
degraded operational modes of the applications. Instead, we
focus on dynamic migrations and load consolidations in large
data centers. Additionally we consider thermal limitations of
individual devices when making the migration decisions.

Willow tries to adapt to the energy and thermal profile of
the data center by managing the migration of tasks between
servers. We named our control scheme after the Willow
bird that migrates from Europe to Africa during winter and
vice versa during summer in order to survive the extreme
temperature conditions.

The rest of the paper is organized as follows. Section II
highlights some of the related work in the area of power
management in data centers. Section III explains the concept
of Energy Adaptive computing and describes the relationship
between energy and thermal constraints. Section IV explains
the multi-level power control architecture and simultaneous
energy adaptations on the supply and demand sides. Section V
presents the evaluation of Willow by analysis and experiments.
Section VI concludes the paper. Throughout the paper we use
the terms energy and power interchangeably.

II. RELATED WORK

Traditionally power control techniques [2], [3], [4] have
focused on harvesting the idle periods in the workloads and
either put the devices in low power modes or reduce the
operation bandwidth of the components. Research works have
explored the use of power control techniques in various
components in the data centers, like network links [5], [6]
and disks [7], [8].

Heller et al. [9] propose a dynamic change in the number
of active components with changing workload patterns. The
goal is to use only a required subset of network compo-
nents and power down unnecessary components. Moore et
al. [10] incorporate temperature profiles in data centers to
make workload placement decisions. Wang et al. [11] propose
an algorithm based on optimal control theory to meet with
the energy and thermal constraints in chip multi-processors.
Their algorithm exploits the availability of per-core DVFS
in current day processors and formulates a MIMO model
for multi-core processors. Anderson et al. [12] propose a
cluster architecture with low-power, cheap processors and
flash storage. This architecture performs best in data intensive
application scenarios with small sized random accesses.

Nathuji and Schwan [13] propose a coordinated power
management scheme in distributed environments with virtual
machines. They leverage the guest level power management
techniques and realize them in real time on the host without
violating the guaranteed resource isolation between multiple
guests. X. Wang and Y. Wang [14] propose a cluster level
coordinated control architecture that aims at providing per-
VM performance guarantees and a cluster level power control.
Govindan et al. [15] present power profiles for benchmark
applications. They have designed efficient power provisioning
techniques based on this profiling.

While all the above techniques perform well in a situation
where the available power supply is stable, these techniques
do not efficiently handle situations of continuous variation in
energy availability.

K. Kant [1] introduces the concept of Energy Adaptive
Computing (EAC). Notably, power control in EAC is driven
mainly by variability in energy and thermal profiles and not by
the presence of idle periods. In other words, the migrations in
EAC are constraint-driven. K.Kant [16] addresses the problem
of coordinating power supply and demand simultaneously in
hierarchical multilevel systems like data-centers. Our current
work builds on [16] and presents a complete design and
analysis of a control scheme (Willow) to achieve the supply
side and demand side coordination. Willow considers power
and thermal constraints simultaneously. We have evaluated
the performance of Willow via real time experiments on a
cluster. Also Willow can be seamlessly applied on top of any
existing idle power control technique with slight modifications.
Section III explains in detail the concept of energy and thermal
adaptive computing.

III. ENERGY AND THERMAL ADAPTIVE COMPUTING

Energy costs constitute a significant proportion of the oper-
ational costs of a data center. The increasing carbon footprint
as a result of the enormous energy that is being consumed
by today’s data centers is an area of growing concern. Use of
alternate sources of energy like renewable forms and reducing
the size of energy storage systems in these data centers can
help reduce the carbon footprint greatly. But the down side of
this approach is increased variability in the energy availability
and more frequent episodes of energy deficiency in some parts
of the data center. The sustainability concerns coupled with
the need to guarantee a certain degree of service quality make
energy adaptive computing an ideal strategy in data centers.

In addition to the energy availability, the thermal constraints
play a significant role in workload adaptation in a data center.
In this section, we discuss the coordination issues relative to
thermal adaptation. To start with let us consider a power-
plenty situation where only the thermal controls go into
effect. Traditionally, CPUs are the only devices that have
significant thermal issues to provide both thermal sensors and
thermal throttling mechanisms to ensure that the temperature
stays within appropriate limits. For example, the 𝑇 states
provided by contemporary CPUs allows introduction of dead
cycles periodically in order to let the cores cool. DIMMs
are also beginning to be fitted with thermal sensors along
with mechanisms to reduce the heat load. With tight enclo-
sures such as blade servers and laptop PCs, ambient cooling,
and increasing power consumption, other components (e.g.
switching fabrics, interconnects, shared cache, etc.) are also
likely to experience thermal issues. In challenging thermal
environments, a coordinated thermal management is crucial
because the consequences of violating a thermal limit could
be quite severe. Also, an over - throttling of power to provide
a conservative temperature control could have severe perfor-
mance implications.
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Thermal control at the system (e.g., server, client or net-
work/storage element) level is driven by cooling character-
istics. For example, it is often observed that all servers in
a rack do not receive the same degree of cooling, instead,
depending on the location of cooling vents and air movement
patterns, certain servers may receive better cooling than others.
Most data centers are unlikely to have finer grain mechanisms
(e.g., air - direction flaps) to even out the cooling effectiveness.
Instead, it is much easier to do their thermal management to
conform to the cooling profile. So, the simplest scheme is
for each server to manage its own thermals based on the pre-
vailing conditions (e.g., on - board temperature measurements).
However, such independent controls can lead to unstable or
suboptimal control. A coordinated approach such as the one
considered in this paper could be used to ensure satisfactory
operation while staying within the temperature limits - or rather
within the power limits dictated by the temperature limit and
heat dissipation characteristics. The next subsection establishes
this relationship.

A. Energy-Temperature relationship

In the design of our control scheme we limit the power
consumption of a device based on its thermal limits as follows.

Let 𝑡 denote time, 𝑇 (𝑡) the temperature of the component
as a function of time, 𝑃 (𝑡) power consumption as a function
of time, and 𝑐1, 𝑐2 be the appropriate thermal constants. Also,
let 𝑇𝑎 denote the ambient temperature, i.e., temperature of
the medium right outside the component. The component will
eventually achieve this temperature if no power is supplied to
it. Then the rate of change of temperature is given by

𝑑𝑇 (𝑡) = [𝑐1𝑃 (𝑡) + 𝑐2(𝑇 (𝑡)− 𝑇𝑎)]𝑑𝑡 (1)

Being a first-order linear differential equation, this equation
has an explicit solution. Let 𝑇 (0) denote the temperature at
time 𝑡 = 0. Then,

𝑇 (𝑡) = [𝑇𝑎+[𝑇 (0)−𝑇𝑎]𝑒
−𝑐2𝑡]+𝑐1𝑒−𝑐2𝑡

∫ 𝑡

0

𝑃 (𝜏)𝑒𝑐2𝜏 𝑑𝜏 (2)

where the first term relates to cooling and tends to the
ambient temperature 𝑇𝑎 and the second term relates to heating.
Let 𝑇𝑙𝑖𝑚𝑖𝑡 denote the limit on the temperature and 𝑃𝑙𝑖𝑚𝑖𝑡 is
the limit on power consumption so that the temperature does
not exceed 𝑇𝑙𝑖𝑚𝑖𝑡 during the next adjustment window of Δ𝑠

seconds. It is easy to see that,

𝑇 (𝜏) = 𝑇𝑎+𝑃𝑙𝑖𝑚𝑖𝑡𝑐1/𝑐2[1−𝑒−𝑐2Δ𝑠 ]+[𝑇 (0)−𝑇𝑎]𝑒
−𝑐2Δ𝑠 (3)

It can be observed that Equation 2 can be used to predict
the value of temperature of the device at the end of the
next adjustment window and hence can help in making the
migration decisions. We use this relationship to estimate the
maximum power consumption that can be allowed on a node
so that it does not exceed its thermal limits.

Fig. 1. A simple example of multi-level power control in a datacenter

IV. SUPPLY AND DEMAND SIDE ADAPTATION IN WILLOW

This section describes the mechanism adopted by Willow
to adapt the workload to the energy and thermal profiles in
a data - center via co - ordination between supply and demand
sides.

A. Hierarchical Power Control

Power/energy management is often required at multiple lev-
els including individual devices (CPU cores, memory DIMMs,
NICs, etc.), subsystems (e.g., CPU - cache subsystem), systems
(e.g., entire servers), and groups of systems (e.g., chassis or
racks). In a power limited situation, each level will be expected
to have its own power budget, which gets divided up into
power budgets for the components at the next level. This brings
in extra complexity since one must consider both the demand
and supply sides in a coordinated fashion at various levels. In
this paper we use such a multilevel power control architecture.
One simple such power control model is shown in Figure 1.
The data center level power management unit (PMU) is at the
level 3. The rack level PMU is at level 2 and server/switch
level PMUs are at level 1.

With such a multilevel power control architecture our con-
trol scheme attempts to provide the scalability required for
handling energy and thermal adaptation in large data centers
with minimum impact on the underlying networks.

In the hierarchical power control model that we have
assumed, the power budget in every level gets distributed to
its children nodes in proportion to their demands. All the leaf
nodes are in level 0. The component in each level 𝑙 + 1 has
configuration information about the children nodes in level
𝑙. For example the rack level power manager has to have
knowledge of the power and thermal characteristics of the
individual components in the rack. Within a rack, the power
and thermal characteristics of a SAN enclosure might be
completely different from that of a Gigabit Ethernet switch.
The components at level 𝑙 continuously monitor the demands
and utilization levels and report them to level 𝑙 + 1. This
helps level 𝑙 + 1 to continuously adjust the power budgets.
Level 𝑙 + 1 then directs the components in level 𝑙 as to what
control action needs to be taken. The granularities at which
the monitoring of power usage and the allocation adjustments
are done are different and are discussed later in Section IV-C.
The communication pattern of the control messages is shown
in Figure 2.
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Fig. 2. Communication of control messages

B. Supply And Demand Side Coordination

As mentioned in Section II Willow implements a unidirec-
tional hierarchical power control scheme. Migrations of power
demands are initiated by the power and thermal constraints
introduced as a result of increase in demand at a particular
node or decrease in power budget to the node. Simultaneous
supply and demand side adaptations are done to match the
demands and power budgets of the components.

C. Time Granularity

The utilization of server resources in a data center varies
widely over a large scale. If the nature of the workload
fluctuates significantly, it is likely that different resources (e.g.,
CPU cores, DRAM, memory bus, platform links, CPU core
interconnects, I/O adapters, etc.) become bottlenecks at differ-
ent times; however, for a workload with stable characteristics
(but possibly varying intensity) and a well-apportioned server,
there is one resource (typically CPU and sometimes network
adapter) that becomes the first bottleneck and its utilization
can be referred to as server utilization. (Recommended server
configuration practices attempt to achieve this). We assume
this is the case for the modeling presented in this paper, since
it is extremely difficult to deal with arbitrarily configured
servers running workloads that vary not only in intensity
but their nature as well. Under these assumptions, the power
consumption can be assumed to be a monotonic function of the
utilization. Furthermore, assuming that the bottleneck platform
resource does not reach saturation, the relationship can be
assumed to be approximately linear.

Because of varying intensity of the workload, it is important
to deal with average utilizations of the server at a suitable time
granularity. For convenience the demand side adaptations are
discretized with a time granularity of Δ𝐷𝑙. It is assumed that
this time granularity is sufficiently coarse to accommodate ac-
curate power measurement and its presentation, which can be
quite slow. Typically, appropriate time granularity at the level
of individual servers are of the order of tens of milliseconds or
more. Coarser granularities may be required at higher levels
(such as rack level).

Even with a suitable choice of Δ𝐷𝑙, it may be necessary to
do further smoothing in order to determine trend in power
consumption. Although it is possible to use sophisticated
ARIMA type of models, a simple exponential smoothing is

often adequate. Let 𝐶𝑃𝑙,𝑖 be the power demand of node 𝑖 at
level 𝑙. For exponential smoothing with parameter 0 < 𝛼 < 1,
the smoothed power demand 𝐶𝑃 ′ is given by:

𝐶𝑃 ′
𝑙,𝑖 = 𝛼𝐶𝑃𝑙,𝑖 + (1− 𝛼)𝐶𝑃 ′𝑜𝑙𝑑

𝑙,𝑖 (4)

Note that the considerations in setting up the value of Δ𝐷𝑙

come from the demand side. In contrast, the supply side time
constants are typically much larger. Because of the presence
of battery backed UPS and other energy storage devices, any
temporary deficit in power supply in a data center is integrated
out. Hence the supply side time constants are assumed to
be Δ𝑆𝑙 = 𝜂1Δ𝐷𝑙, where 𝜂1 is an integer > 1. Willow also
performs workload consolidation when the demand in a server
is very low so that some servers can be put in a deep sleep
state such as S3 (suspend to memory) or even S4 (suspend
to disk). Since the activation/deactivation latency for these
sleep modes can be quite high, we use another time constant
Δ𝐴𝑙 for making consolidation related decisions. We assume
Δ𝐴𝑙 = 𝜂2Δ𝐷𝑙, for some integer 𝜂2 such that 𝜂2 > 𝜂1.

D. Supply Side Adaptation

As mentioned earlier we ignore the case where the data
center operates in a perpetually energy deficient regime. The
available power budget of any level 𝑙+1 is allocated among the
nodes in level 𝑙 proportional to their demands. As mentioned
in Section IV-C the supply side adaptations are done at a
time granularity of Δ𝑆𝑙. Hence the power budget changes are
reflected at the end of every Δ𝑆𝑙 time period. Let TP𝑜𝑙𝑑

𝑙+1 be
the overall power budget at level 𝑙 + 1 during the last period.
TP𝑙+1 is the overall power budget at the end of current period.
Δ𝑇𝑃 = TP𝑙+1- TP𝑜𝑙𝑑

𝑙+1 is the change in overall power budget.
If Δ𝑇𝑃 is small we can update the values of TP𝑙,𝑖’s rather
trivially. However if Δ𝑇𝑃 is large we need to reallocate the
power budgets of nodes in level 𝑙. In doing so we consider
both hard and soft constraints.

1) Hard Constraints are imposed by the thermal and power
circuit limitations of the individual components. In our
control scheme the thermal limits play an important role
in deciding the maximum power that can be supported
in the component.

2) Soft Constraints are imposed by the division of power
budget among the other components in the same level.

The power and thermal constraints thus necessitate the
migration of demand in level 𝑙 from power deficient nodes
to nodes with surplus power budget.

Any increase in the overall power budget happens at a
higher level and is then reflected in its constituent lower levels.
This situation can lead to three subsequent actions.

1) If there are any under provisioned nodes they are allo-
cated just enough power budget to satisfy their demand.

2) The available surplus can be harnessed by bringing in
additional workload.

3) If surplus is still available at a node then the surplus
budget is allocated to its children nodes proportional to
their demand.
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E. Demand Side Adaptation

The demand side adaptation to thermal and energy profiles
is done systematically via migrations of the demands. We
assume that the fine grained power control in individual nodes
is already being done so that any available idle power savings
can be harvested. Our focus in this paper is on workload
migration strategies to adapt to the energy deficient situations.
For specificity we consider only those type of applications
in which the demand is driven by user queries and there is
minimum or no interaction between servers, (e.g.,) transac-
tional workloads. The applications are hosted by one or more
virtual machines (VMs) and the demand is migrated between
nodes by migrating these virtual machines. Hence the power
consumption is controlled by simply directing the user queries
to the appropriate servers hosting them.

There are a few considerations in designing a control
strategy for migration of demands.

1) Error Accumulation: Because of the hierarchical nature
of the control scheme any small errors and uncertainties
that occur in the topmost level add up as we move down
the lower levels. As a consequence the worst errors are
experienced by the lowermost levels.

2) Ping-Pong Control: A migration scheme that migrates
demand from server A to B and then immediately from
B to A due to erroneous estimations leads to a ping-
pong control This is highly undesirable considering the
overheads involved.

3) Imbalance: The migration scheme should not leave a few
servers in the power deficient state while some servers
have excess power budgets.

We carefully avoid these pitfalls by allowing sufficient mar-
gins both at the source and the destination to accommodate
fluctuations after the migrations are done.

In the unidirectional approach that we have implemented,
the migrations are initiated only by the tightening of the power
constraints and not by their loosening. The tightening of power
constraints is handled by reducing the power consumption via
workload migration. The migrations are initiated in a bottom
up manner. If the power budget TP𝑙,𝑖 of any component 𝑖
is too small then some of the workload is migrated to one
of its sibling nodes. We call this as local migration. If the
sibling nodes of component 𝑖 do not have sufficient surplus to
accommodate its excess demand then the workload is migrated
to one of the children of another 𝑙+1 component. We call this
non-local migration. Always local migrations are preferred to
non-local migrations. This is because of two reasons :

1) The overheads involving networking resources are re-
duced when the migrations are local rather than non-
local. Also instance in some data centers typically the
IP addresses are location dependent [17] and so a non -
local migration would require reconfiguration of the IP
addresses.

2) The VMs might have some local affinity with common
resources like hard disks and a non-local migration
might affect this affinity.

The migration decisions are made in a distributed manner at
each level in the hierarchy starting from the lowermost level.
The local demands are first satisfied with the local surpluses
and then those demands that are not satisfied locally are passed
up the hierarchy to be satisfied non-locally. The final rule in
the unidirectional control scheme is that the migrations are
destined to a node only if the power budget of the node is not
reduced by the event that caused the migration. For instance
if the power budget of a rack has gone down because of some
reason, no migrations are allowed into that rack. Similarly if
the power budget of the entire data center has reduced no
migrations are allowed at all.

Now having defined the basic rules for the migration scheme
we define a few terms related to the migration decisions.

Power Deficit and Surplus: The power deficit and surplus
of a component 𝑖 at level 𝑙 are defined as follows.

𝑃𝑑𝑒𝑓 (𝑙, 𝑖) = [𝐶𝑃 ′
𝑙,𝑖 − 𝑇 𝑃𝑙,𝑖]

+ (5)

𝑃𝑠𝑢𝑟(𝑙, 𝑖) = [𝑇 𝑃𝑙,𝑖 − 𝐶𝑃 ′
𝑙,𝑖]

+ (6)

where []+ means if the difference is negative it is considered
zero.

From the above definitions we can define the power surplus
and deficit at a particular level to be

𝑃𝑑𝑒𝑓 (𝑙) = 𝑚𝑎𝑥(𝑃𝑑𝑒𝑓 (𝑙, 𝑖)) (7)

𝑃𝑠𝑢𝑟(𝑙) = 𝑚𝑎𝑥(𝑃𝑠𝑢𝑟(𝑙, 𝑖)) (8)

Power Imbalance: The power imbalance is a measure of the
inefficiency in allocation of the power budgets and is defined
as

𝑃𝑖𝑚𝑏(𝑙) = 𝑃𝑑𝑒𝑓 (𝑙) + 𝑚𝑖𝑛[𝑃𝑑𝑒𝑓 (𝑙), 𝑃𝑠𝑢𝑟(𝑙)] (9)

The reason for capping the surplus by deficit is simply
because any supply that is in excess of deficit is not handled
by our control scheme and is left to be taken care of by the
idle power control schemes that operate at a finer granularity.
If there is no surplus that can satisfy the deficit in a node, the
excess demand is simply dropped. In practice this means that
some of the applications that are hosted in the node are either
shut down completely or run in a degraded operational mode
to stay within the power budget.

Power Margin (P𝑚𝑖𝑛): The minimum amount of surplus that
has to be present after a migration in both the source and target
nodes of the migration. This helps in mitigating the effects of
fluctuations in the demands.

Migration Cost: The migration cost is a measure of the
amount of work done in the source and target nodes of
the migrations as well as in the switches involved in the
migrations. This cost is added as a temporary power demand
to the nodes involved.

A migration is done if and only if the source and target
nodes can have a surplus of at least P𝑚𝑖𝑛. Also migrations
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are done at the application level and hence the demand is
not split between multiple nodes. Finally Willow also does
resource consolidation to save power whenever possible. When
the utilization in a node is really small the demand from that
node is migrated away from it and the node is deactivated.
Note that any measure of power savings that we attempt to
present is a result of this strategy. In reality the power savings
can be much more when idle power control techniques are in
place.

F. Packing The Bins

Even with the above mentioned constraints there are mul-
tiple ways of matching a demand with a surplus. The entire
problem now reduces to the classical bin packing problem. The
surpluses available in different nodes form the bins. The bins
are variable sized and the demands need to be fitted in them.
The variable sized bin packing problem is a NP-hard problem
as such and numerous approximation schemes are available in
literature [18], [19], [20]. We choose one such simple scheme
called FFDLR [20]. Let 𝐿 be the list of demands that are to
be satisfied. The FFDLR scheme works as follows.

1) The bin sizes and demand sizes are normalized so that
the largest bin has a size of 1.

2) Pack the first demand in 𝐿 into the first bin of size of
1.

3) Repeat steps 1 and 2 until all demands are matched with
a surplus

4) At the end, the contents of all bins are repacked into the
smallest possible bins.

FFDLR solves a bin packing problem of size 𝑛 in time
𝑂 (𝑛 𝑙𝑜𝑔 𝑛). The optimality bound guaranteed for the solution
is (3/2) OPT +1 where OPT is the solution given by an
optimal bin packing strategy. We chose this algorithm for
two reasons. First, it is simple to implement with guaranteed
bounds. Second, repacking into smaller bins means we try to
run every server at full utilization. The bins (servers) that are
empty can then be deactivated during the consolidation phase.

V. EVALUATION

A. Performance Analysis

In this section we discuss some of the properties of Willow
that impact its performance.

1) Convergence: Willow is a distributed control scheme
and the decisions are decentralized. Before we present the
convergence analysis of Willow, a discussion of the following
definition from [21] is necessary.

Definition 1: Consider an update to an object 𝑋 in a system
at time 𝑡. The system is said to be 𝛿 convergent if all sites in
the system perceive the same value of 𝑋 after time 𝑡 + 𝛿.

In other words any update at time 𝑡 is propagated to all sites
in the system within time 𝑡+𝛿. As mentioned in Section IV-C
any update to the demand values is done at a time granularity
of Δ𝐷𝑙 at all the levels. A node at any level 𝑙 > 2 obtains
the updates in demand values only from its children and hence
the communication of update messages is one - way. Assuming
that the links carrying the control messages between the levels

do not fail or do not suffer from prolonged congestion, the time
taken by any message to be communicated from a leaf to the
root is much less than Δ𝐷𝑙. Similarly the supply side updates
are done at a granularity of Δ𝑆𝑙 (> Δ𝐷𝑙). Here the one way
communication is from the root to the leaves.

In order to estimate the value of 𝛿 let us consider a
conservative approach. Consider a scenario where there are
ℎ levels in the power control hierarchy. An update message
requires to be propagated through all these ℎ levels. The nodes
at every level have to update the old values and send the
update to the next level (up or down). Suppose that the update
propagation time through each level is at most 𝛼. So the overall
time taken for propagation of update messages is ℎ𝛼. In this
case assuming the value of Δ𝐷𝑙 to be much larger than the
actual value (say, 10 times ℎ𝛼) would avoid instabilities in
decision making. Even in a very large data center, the number
of levels in the hierarchy is unlikely to be more than 4 or 5, and
update at each level can be done in a few tens of milliseconds.
Therefore, 𝛿 ≈ 50𝑚𝑠, and a Δ𝐷𝑙 value exceeding 500𝑚𝑠
should be safe in almost all cases.

2) Time Complexity: The major aspect in the decision
making process is solving the bin packing problem. The
communication times are assumed to be negligible. Let 𝑛 be
the total number of leaf nodes (servers) in the data center.

Consider a problem instance to be a set of demands that
have increased simultaneously at the different leaves of the
tree. The distributed algorithm solves them independently at
the level 1. Let 𝑏𝑙 be the maximum branching factor of any
node in level 𝑙.

Time complexity of FFDLR in level 1 = 𝑂 (𝑏1 𝑙𝑜𝑔 𝑏1) = 𝑘.
where 𝑘 is a constant. Similarly, at every level the simulta-

neous problem solving takes a constant time (O(𝑏𝑙 𝑙𝑜𝑔 𝑏𝑙)) in
solving the bin packing problem.

If ℎ is the height of the tree and ℎ = O (𝑙𝑜𝑔 𝑛), the time
complexity for making the decisions is 𝑂 (𝑙𝑜𝑔 𝑛).

3) Other Properties: We highlight some of the important
properties of Willow here.

Property 1: The solutions of the different instances of the
bin packing problem with given locality constraints are optimal
with the bounds guaranteed by the FFDLR algorithm. The
locality constraint that we refer to here is the rule that local
migrations are preferred to non-local migrations.

Property 2: The introduction of resource constraints along
with the locality constraints will still yield optimal solutions.
The resource constraints that we refer to here are non -
availability of adequate resources like CPU or large affinity
to some resources like hard disks.

In general the introduction of any constraints results in the
reduction of number of surpluses that are being presented to
satisfy the demands. Hence the solutions will be the same
irrespective of whether the problem is solved in a distributed
manner or it is solved at a centralized location.

Property 3: The number of communication messages on any
network link between a node at level 𝑙 and a node at level 𝑙+1
in a period of Δ𝐷𝑙 is at most 2 - one on either direction in the
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Fig. 3. Configuration used in simulation

link. This significantly reduces the communication overhead
due to the control messages that are exchanged.

Property 4: Let 𝑃𝑚𝑖𝑛 be the migration threshold i.e Willow
migrates a demand from a node 𝑛1 to a target node 𝑛2 only
if there is a surplus of at least 𝑃𝑚𝑖𝑛 in the source and target
nodes after the migration. Let Δ𝑓 be the time for which the
power demands do not increase beyond 𝑃𝑚𝑖𝑛 in time Δ𝑓 .
After a decision is made the validity of the decision remains at
least for time Δ𝑓 . In other words, a demand that has migrated
from node 𝑛1 to node 𝑛2 remains in node 𝑛2 at least for time
Δ𝑓 .

We conducted detailed simulations and real time experi-
ments to evaluate the performance of Willow. The simulations
were based on generalized assumptions on the power demands
and limits. The experiments were done to calibrate the equa-
tion that defines the relationship between power and temper-
ature and to test the working of Willow when real migrations
of VMs is done practically. The simulations and experiments
demonstrate the adaptability of Willow to varying energy and
thermal conditions. Section V-B explains the simulations and
Section V-C explains the experimental results.

B. Simulations

1) Simulation Environment: We simulated Willow in MAT-
LAB. The simulator can be configured to simulate any number
of levels and servers in the data center. For our performance
evaluation we used the configuration shown in Figure 3.
There are four levels in the power control hierarchy and 18
server nodes. On each server we placed a random mix of 4
different application types that have a relative average power
requirement of 1, 2, 5 and 9. The average power demand in
a server is the sum of all the average power requirements of
the applications that are hosted in it. The power demand in
each node was assumed to have a Poisson distribution. The
time constant multipliers for discrete time control 𝜂1 and 𝜂2

in Section IV-C are assumed to be 4 and 7 respectively.
2) Setting Up the Thermal Constants: The thermal con-

stants in Equation 1 are dependent on the thermal properties
of the individual devices. For our simulations we calculate
the values of these constants by assuming reasonable values
for the maximum device power and the ambient temperature.
We assume that the average server/switch power consumption
is around 450 Watts and a typical ambient temperature to
be 25∘C. Also the thermal limit of the servers and switches
is assumed to be 70∘C. With these settings, Figure 4 shows

Fig. 4. Setting up the thermal constants

one possible set of values for the constants 𝑐1 and 𝑐2. When
the power consumption is zero (when the server is in a deep
sleep state because of no activity), the component is at the
ambient temperature. The power surplus that is presented at
this temperature should be approximately the same as the
maximum power rating of the component. From Figure 4
it can be seen that the values 𝑐1 = 0.08 and 𝑐2 = −0.05
show the maximum power limit to be around 450𝑊 when
the ambient temperature 𝑇𝑎 is 25∘C and the initial power
consumption is zero. Hence we chose these values for 𝑐1 and
𝑐2 for our experiments. It can be seen from Figure 4 that when
the ambient temperature 𝑇𝑎 = 45∘C and the temperature of the
server is at 70∘C the power surplus that is presented is almost
zero because the server has already reached its thermal limit.

We assume that the time taken for the increase in temper-
ature when the demand increases, is less than Δ𝐷𝑙. This is
a conservative assumption. In reality the temperature might
not reach a steady state value before Δ𝐷𝑙. However such a
conservative assumption avoids the tasks that are migrated to
a node from being migrated away again within a short period
of time. In other words, it reduces the number of migrations
and instability in decisions.

3) Energy and Thermal Adaptation: As explained in Sec-
tion III Willow migrates the demand from energy deficient
areas to energy surplus areas. In doing so care is taken so
that too much workload is not migrated to already hot zones.
In order to demonstrate this behavior of Willow we set the
ambient temperature of servers 1 to 14 to be equal to 25∘C
and the ambient temperature of servers 15 to 18 as 40∘C. This
setting reflects a real time scenario where in a data center
some servers are in the hot zones and some others are in
cooler zones. Figure 5 shows the average power consumption
under this setting for different utilizations. The average power
consumption of servers 15 to 18 is much lower than the
rest of the servers. This is because the power surplus that is
being presented in these servers is much less than the others
due to the higher ambient temperature. Hence less workload
is running on these servers than the others. It can be seen
from Figure 5 that at low utilizations the power consumed
by the servers in the high temperature zone is low. As the
utilization increases, the power consumed by these servers
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Fig. 5. Average power consumption when 𝑇𝑎=25∘C for servers 1-14 and
𝑇𝑎=40∘C for servers 15-18

Fig. 6. Average temperature of servers when 𝑇𝑎 = 25∘C for servers 1 - 14
and 𝑇𝑎 = 40∘C for servers 15 - 18

also increases to cope with the higher utilization, but only
upto the limit provided by the thermal constraint. Figure 6
shows the average temperature of all the servers with the
above mentioned setting. At low utilization levels the servers
in the hot zones are maintained at a temperature close to the
ambient temperature of 40∘C. The variation in temperature
of the servers in the hot and cold zones gradually reduces
with the increase in utilization and the temperature of the
servers is almost uniform when the utilization is very high.
Figure 7 shows the power savings achieved in each server at
40% utilization. Again we emphasize that this power savings
is a result of consolidation of workload during low utilization
levels. We see that maximum power savings is achieved in
the last four servers. This is because Willow tries to move as
much work away from these servers as possible due to their
high temperatures and hence they remain shut down for more
time.

4) Migration Traffic: The most important aspect of Willow
is the migrations that are done to adapt to the energy and
thermal profiles in the data center. A measure of the migration
traffic is important because migrating a demand is an overhead
both in terms of power and network resources. Migrations
in Willow are either demand driven or consolidation driven.
While the former cause is more often seen in high utilization
cases the latter is observed a lot in low utilization cases. This
trend is shown in Figure 9. Figure 10 shows the proportion
of migration traffic normalized with respect to the maximum

Fig. 7. Power saved in the servers as a result of consolidation when
𝑇𝑎 = 25∘C for servers 1 - 14 and 𝑇𝑎 = 40∘C for servers 15 -18 (U=40%)

Fig. 8. Switch Configuration

possible utilization of the network. This normalization is
necessary if we need to have an absolute picture of the
migration overhead. For instance 2% of the overall traffic
at 10% utilization may be much smaller than 2% of the
overall traffic at 80% utilization. We see that in Figure 10 the
migrations are increasing with increase in utilization. However
at high utilization levels the migration traffic is decreasing.
This is because at higher utilizations, the servers have no
surplus to accommodate the workload from other servers. At
50% utilization there is a sudden increase in the number of
migrations. This is because at 50% utilization both demand
and consolidation driven migrations occur almost equally and
hence the number of migrations shoots up. However at higher
utilizations very less number of migrations occur since none
of the servers has a surplus to accommodate the deficit that is
arising in the other servers.

5) Switch Power Consumption: The migrations have a
direct impact on the switch power consumption since the
switches are involved directly in the migrations and an indirect
impact since after migration the corresponding switch that
handles connections to the target node of the migrations may
have to handle increased traffic. The switch configuration that
we assumed for our simulation is shown in Figure 8. We can
easily observe the correspondence of the switch configuration
in Figure 8 and the power control hierarchy in Figure 3. Level
1 switches are placed along with the servers in level 1 in
the power control hierarchy, level 2 switches are in level 2
in the power control hierarchy and so on. The switches are
allocated a power budget from a control component one level
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Fig. 9. Demand driven vs Consolidation Driven Migrations

Fig. 10. Migration traffic in the switches normalized to maximum traffic

above. This correspondence of the switch hierarchy and power
control hierarchy may not be present always. However the
switches draw power from one of the levels in the hierarchy.
By placing the switches in the hierarchy and apportioning a
power budget to them we can directly control the amount
of traffic that can go through a switch. We have a simple
power model for the switch power consumption. We assume
that the switch power consumption has two parts static and
dynamic. The dynamic portion of the power consumption in
a switch is directly proportional to the amount of traffic it
handles. The static part is fixed and is very small. Assuming
the static part to be small is idealistic since the idle power
control techniques have to be extremely efficient to achieve
this. Nevertheless, we are positive that this is achievable in the
near future. We also assume that in the presence of redundant
paths with two switches, the load is balanced evenly between
the switches. This is typically the case in any data center with
redundant network paths. Figure 11 shows the average power
consumption of the level 1 switches for different average
utilizations in the servers. According to our switch power
model the power consumption in switches in the other levels
would simply be the aggregation of demands in their children
switch nodes. We see that the average power demand is almost
the same in all the switches. At lower utilizations one might
expect different power consumptions in different switches as
a result of consolidation. But the fact that local migrations are
preferred to non-local migrations, evenly spreads out the traffic

Fig. 11. Power Demand Of Level 1 Switches

across all the switches. Figure 12 shows the migration cost
that is directly associated with the switches. This corresponds
to the trend in total number of migrations that are done at
different utilizations as shown in Figure 10.

Fig. 12. Migration cost in level 1 switches

C. Experimental Evaluation

TABLE I
UTILIZATION VS POWER CONSUMPTION

Utilization% Average Power consumed(Watts)
20 175
40 190
60 215
80 230

100 245

Fig. 13. Experimental Testbed
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Fig. 14. Experimental estimation of parameters 𝑐1 and 𝑐2

1) Experimental Testbed: We conducted real time experi-
ments to evaluate the performance of Willow. Figure 13 shows
the architecture of our experimental testbed. A cluster of three
Dell servers was formed and VMWare ESX server 3.5 [22]
was running on all three of the servers. The three servers were
managed from a remote machine. The remote machine is the
control plane which simulates the hierarchical power control
scenario. Since there were only 3 machines, we simulated a
power control hierarchy with two levels - two switches in level
1 and one switch in level 2. CPU temperature was measured
from the onboard sensor. CPU utilization of the ESX servers
was monitored continuously by a script running on the control
plane. The variation in power supply was introduced into
the system artificially and the control system made migration
decisions to adapt to the variations in power supply. Virtual
machines were installed on each of the ESX servers. These
virtual machines were hosting web servers that supported one
of three applications, each with different power profiles. For
simplicity all the applications were CPU bound. Hence the
power - temperature measurements that we make correspond
to CPU utilization.

2) Baseline Experiments: We conducted baseline exper-
iments to parameterize Equation 1 and to capture the re-
lationship between power and utilization. A CPU intensive
application was running in the server. Table I shows the power
consumption of the servers for various CPU utilizations. We
see that the power consumption is a continuously increasing
function of utilization. The static power consumption was
found to be almost a constant. With only a single component
in the server (in our case CPU) being involved in the compu-
tations, this kind of a linear relationship is quiet intuitive. The
scenario where power consumption follows only the utilization
is an idealistic situation. Fine grained power management
techniques aim at achieving this goal by trying to minimize
the static power consumption. The scope of Willow is not
idle power control but to adapt to the power supply and
demand. Notably, the servers that we used are old machines
and hence VMWare ESX hypervisor was not able do any
power management by itself. The power consumption was
measured using Extech 380801 power analyzer. The sampling
rate of the power analyzer was around 2Hz.

Figure 14 shows the trend in power consumption vs tem-
perature. The parameter values in Equation 1 were determined
to be 𝑐1 = 0.2 𝑐2 =−0.008. Note that these values are dif-

ferent from those used in the simulation. This is because
the maximum wattage in the simulations was assumed to be
around 450𝑊 . However in practical scenarios, the power that
a server consumes even at 100% utilization is much less than
the maximum wattage. In our case at 100% CPU utilization
the power consumed was around 245 - 250𝑊 . The y-axis in
Figure 14 is the maximum power that can be accomodated and
the x-axis is the difference between ambient temperature and
current temperature of the device. The ambient temperature
was assumed to be uniform throughout the room and was equal
to 25∘C.

TABLE II
APPLICATION POWER PROFILE

Application Increase in power consumption (Watts)
A1 8
A2 10
A3 20

3) Application Profiling: We designed three applications
A1, A2 and A3 with different CPU utilizations and hence
different power consumptions. Table II shows the increase in
power consumption when three applications are running on
the server. Each application is run on a single virtual machine.
The power consumption of the servers can be controlled by
migrating the VMs away from or to the servers.

Fig. 15. Power supply variation (Energy Deficient Situation)

Fig. 16. Number of Migrations

4) Experimental Results: In this section we present the
observed results when the servers are running at an overall
average utilization level of 60%. Figure 15 shows the power
supply variation pattern that was used in the simulation when
the average utilization is 60%. As stated in Section I the
perpetually energy deficient regime is simply ignored and only
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Fig. 17. Temperature Time Series (Server A)

Fig. 18. Average Temperature of Servers

short term energy deficiencies are considered. The available
power supply is divided proportionally between the servers.
When the available power supply is reduced the tasks are
migrated away from servers running at high utilizations to
servers running at a low utilization. In general the number
of migrations to or from a server depends on the available
power supply and the utilization at which it is running. This
can be observed in Figure 16. For instance, in Figure 15
at time unit 7 the power consumption plunges deeply. In a
power deficient situation, servers that are running at a higher
utilization have to migrate some workload away from them to
maintain the same QoS. It can be seen from Figure 16 that the
number of migrations is also high in time unit 7. The decreased
power supply persists till time unit 10. However there are
no migrations between time units 7 and 10. This is because
of the decision stability property explained in Section V-A.
Once the migrations are done there is enough margin left
to handle the demand variations. Hence no more migrations
are needed. Similar patterns can be observed in time units
12 and 25. Note that after a deep plunge in power supply
there is not much migration activity even if the power supply
increases. This is because of the fact that the migrations
in Willow are always initiated by the tightening of power
constraints and not by their loosening. Note that this is true
only for constraint driven migrations and does not include the
consolidation driven migrations. The initiation of migrations
in a power - plenty situation can happen only at low utilization
levels where there is a possibility of shutting down a server
completely.

5) Workload Consolidation: In Section V-C4 we observe
that at an average utilization level of approximately 60% it is
not possible to shut down any server. This scenario is different
from the case in simulation results where power savings is

Fig. 19. Power supply variation (Energy Plenty situation)

obtained even at 60% utilization. That is because the average
power supply that we used in the simulations is close to the
maximum power limit of the servers. However in the case
of the experiments in Section V-C4 the average power supply
was just enough to support an average utilization of 60%. This
demonstrates the ability of Willow to adapt to the variations in
power supply. In this section we describe the potential power
savings achieved by Willow as a result of consolidation when
there is a large surplus in power supply. In other words this
scenario is the case where some servers are running at low
utilization levels. The available power supply varied as in
Figure 19. Note that the average power supply available is
close to the necessary power supply to support the three servers
at a utilization level of 100% (≈ 750𝑊 ). Consolidation driven
migrations are initiated when the utilization in the server is
lower than the migration threshold. We set this migration
threshold to be 20%. When the migration threshold of a
server falls below this value consolidation driven migrations
are initiated. Table III shows the initial utilization levels of
the servers and average utilization levels of servers after the
run of the experiments. We see that the utilization of Server

TABLE III
UTILIZATION OF SERVERS

Server Initial Utilization% Average Utilization
at the end of experiment

A 60 80
B 40 40
C 20 0

C is 0%. This is because Servers A and B are running below
their power and thermal limits even after the tasks have been
migrated from Server C. Hence there is no need to wake up
server C. Server C remains shut down for the entire run of the
experiments. Let us calculate the power savings achieved by
Willow in this case.

Without consolidation, if the servers A, B and C were
running at utilizations of 80%, 40% and 20% respec-
tively, their average power consumption from Table I
is (175+190+215) 580𝑊 . However after consolidation, the
average power consumption is (230+190+standby) 420 +
standby - power consumption for server C. It is reasonable
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to assume that this standby power consumption is negligible.
For instance VMWare ESX server has the Dynamic Power
Management [23] utility that can shut down an idle host and
the power consumed is zero. With that assumption the power
savings achieved is around 27.5%.

VI. CONCLUSION AND FUTURE WORK

In this paper we have designed Willow, a control scheme
for energy and thermal adaptive computing. In the process
of adapting the workloads according to the thermal and
energy constraints of the individual components, Willow makes
stable decisions. The stability in the decision making directly
translates to reduced networking impact since there are no
flip-flops in migrations. The power savings that have been
presented are only the result of completely deactivating the
individual servers or putting them in standby mode as and
when Willow decides to do so. The goal of Willow is not
to maximize the power savings but to adapt to the energy
profile. In allocating the tasks, Willow tries to maximize the
power efficiency. The decision making is decentralized and
centralized decisions are minimized as much as possible. The
thermal constraints were never violated in the simulations or
experiments in any component and no ping - pong migrations
were observed at least for a time Δ𝑓 < 50Δ𝐷𝑙.

In this work, we have tested the performance of Willow in
the case of transactional workloads in simulations for speci-
ficity. In our experiments we used applications that are CPU
intensive. A more complete design must be able to measure
power consumption and temperature of every component in the
server including memory, NIC, hard disks etc. and make fine
grained control decisions. We would also like to analyze the
performance of Willow under more complex workloads where
there is excessive IPC traffic among the servers. A real time
implementation might need to consider the migrations that
are caused as a result of resource constraints as well. In that
case a synchronization mechanism between these migrations
and migrations caused by Willow may be necessary. In order
to do a holistic power control, Willow must consider the
energy consumed by cooling infrastructure as well in the
adaptation. We do not explicitly model multiple QoS classes
and the impact of changes in the network traffic on the QoS of
applications. Nevertheless, the goal of Willow is to minimize
QoS impact by dynamic energy allocation and task migrations.
Dealing with multiple QoS classes is a future direction that
we intend to pursue.
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