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Abstract—Correct pose/posture is crucial in most human
activities, and increasingly in using computer screens of many
form factors. In this paper, we build a spatiotemporal reason-
ing infrastructure on top of standard Computer Vision (CV)
algorithms to provide an alternate, much more accurate, faster
method for tracking correct posture than pure deep learning
(DL) methods. We use CV to determine poses of the 2D human
stick models from RGB images, which are further enhanced using
depth information (from RGB-D camera) to determine relevant
angles and compare them against the standards. By applying our
method to two very different posture applications (knowledge
worker and taekwondo), we show that it outperforms all others,
including machine learning, deep learning, and time series-based
prediction. Furthermore, superior performance is seen not only
in the estimation accuracy but also in the estimation speed.

Impact Statement—Correct posture is critical from many per-
spectives including general health, avoidance of injuries, ensuring
correct movements in various performing arts, aesthetics, etc.
This paper demonstrates that how the integration of computer
vision with logic reasoning can provide posture monitoring not
only more accurately but also much faster than the direct
deep learning techniques in vogue. The efficiency is important
to enable the monitoring in real-time, as required by most
applications. Such monitoring can enable feedback for posture
correction for manually unsupervised activities (e.g., office work),
and reduce manual effort in supervised activities (e.g., performing
art classes.)

Index Terms—Posture Recognition, Depth Correction, RGB-D
cameras, 3D pose detection

I. INTRODUCTION

Correct pose and pose transitions are crucial in numerous
different contexts and may be necessary from many different
perspectives, such as aesthetics (e.g., dancing), successful
performance of an activity (e.g., gymnastics), avoiding severe
injuries (e.g., lifting weights), avoiding repetitive injuries
(e.g., assembly line work), and mitigating adverse effects of
incorrect sitting, which has been called the “new smoking” [1].
In many cases, a correct pose transition is as important as
the pose itself (e.g., dancing, martial arts, gymnastics, weight
lifting, etc.) Note that in all these applications, the pose is
not simply a qualitative concept (e.g., standing vs. sitting)
but requires precise quantification in terms of 3D angles of
various body parts (e.g., the angle between the upper arm and
the main body). However, there are naturally some allowable
ranges/tolerances.

This paper aims to demonstrate that we can accurately
determine such 3D angles and body dimensions from RGB-D
camera views, thereby enabling comparison of the pose and
pose transition against the given standards or requirements.
The uniqueness of our approach is to do so by building

a spatio-temporal reasoning infrastructure on top of basic
computer vision algorithms. Vision algorithms are limited to
detecting objects (humans) and constructing their 2D stick
models, and thus, they are accomplished without any addi-
tional or specialized training data. Using the reasoning avoids
any need for additional training data and associated problems
of bias or overfitting. We consider two distinct applications
in this paper: (a) A knowledge worker sitting in front of
a computer monitor, where we show that the video-based
posture 3D angle estimations accurately track the elaborate
ground truth measurements that we conducted using a host
of sensors, and (b) A martial arts (Taekwondo) scenario,
where the focus is only correctly determining pose transitions
using logic reasoning. In both applications, we show that we
can accurately estimate the depth dimension using a unique
geometric approach and, from there, the 3D angles, poses,
and pose transitions, all without any additional training data
or neural net models. We compare our results against those
of a variety of other methods in the literature, all of which
use some form of neural nets (and hence require additional
training data), and demonstrate that we not only achieve a
higher accuracy but also faster running time of around 500
ms in all cases without exceptions.

The rest of the paper is organized as follows. Section II dis-
cusses the existing work-related posture standards. Section III
discusses the related work and lays out our contributions. In
section IV we describe the proposed 3D posture recognition
approach using RGB-D cameras. Section V then describes our
2D pose transition framework. Section VI comprehensively
evaluates the proposed frameworks. Finally, Section VII con-
cludes the discussion.

II. BACKGROUND

A. Posture Standards

Human posture in an ergonomic work environment has
been studied extensively where it depends significantly on
the furniture used, e.g., chair and table heights, contact with
the chair backrest, screen height/distance, etc. Thus, the er-
gonomics standards defined in various countries such as the
USA, Australia, Europe, and Japan [2] include both human and
furniture aspects. Several methods have been developed for the
assessment of body poses for various types of tasks, including
REBA, RULA, WISHA, OWAS, etc. [3], [4], most of which
are directed toward estimating the risk of Musculoskeletal
Disorder (MSD). We review some of these in the following.

Changes in posture provide valuable information about
stress and attention levels. Several gadgets have also been



developed for posture monitoring, such as a textile pressure
sensor [5] or a censored smart cushion for the chair back [6].
There are also some proprietary tools to check worker posture
using a smartphone, such as https://www.tumeke.io/, or https://
www.ehs.com/2020/03/your-work-from-home-toolbox/, but it
is unclear how they work.

Fig. 1: (a) Posture recommendations, (b) Openpose Model

The posture standards are primarily designed for informal
manual use and have many gaps in the requirements. In
particular, while some angles are specified, several others are
not, as shown in Fig 1(a). In these cases, we make some
assumptions. Also, qualitative specifications like “back should
be straight” do not provide tolerance. We assume a tolerance
value of ±10◦ primarily based on our judgment of when the
deviations become noticeable.

III. RELATED WORK AND OUR CONTRIBUTIONS

A. 2D Posture Modeling

Human pose estimation based on images is a well-developed
area with several pose models and algorithms. 2D pose models
assume a “stick” representation of humans defined by a set of
“key points” and body segments (or parts) connecting those
key points. YOLO-v8 is the latest of high successful YOLO se-
ries of of so-called “top-down” methods (i.e., recognize person
first and then the body parts). The survey paper [7] provides a
comprehensive overview of popular top-down approaches for
human pose estimation. A prevalent bottom-up method (i.e.,
that assembles person from the body parts) is OpenPose [8].
Sitting posture recognition based on OpenPose is discussed
in [9]. We used OpenPose in this research, although YOLO
could also have been used.

OpenPose only concerns the 2D image (i.e., no depth).
Furthermore, the body segments are merely sticks without any
width information.1 Thus, further analysis of the 2D image
also needs to determine the width. These 2D models vary; for
example, COCO (or body 17) has no keypoints for hands/feet,
but the body 25 human model shown in Fig. 1(b) does.
Another model called Blazepose [10] is even more detailed
than body 25. In this paper, we use body 25 as it is detailed
enough for most posture studies; one could similarly use others

1Openpose assigns a width to body segments, but these are predetermined
hyperparameters.

for applications such as dance, where the precise orientation
of fingers and toes may be necessary. It is worth noting that
although accurate 3D (human) body/pose models (as opposed
to stick models) do exist [11], [12], they are not usable for
real-time recognition and are deeply affected by clothing.

B. 3D Posture Recognition from RGB-Depth Cameras

Determining body key points in 3D space is critical to
action recognition, human-robot interaction, and sports analy-
sis. However, this information is challenging to acquire using
standard RGB cameras, despite considerable efforts to estimate
depth from plain RGB frames or “monocular” images [13].
There are also some recent approaches [14], [15] that use
scale-cues extracted from 2D images to attempt to predict
absolute 3D poses; the results are merely approximations. Such
methods need to be both accurate and fan enough for real-time
use.

To obtain a good depth measure in real-time, having multi-
ple views of the scene from different angles is essential. This
can be done by using various RGB cameras deployed at a
known distance apart or by the emerging RGB-D cameras
that are more easily deployed. Scanning LIDARs also provide
depth information similar to RGB-D cameras but are much
more expensive. In this paper, we only work with RGB-D
cameras. Authors in [16] propose a method to segment body
parts using a random forest classifier to perform per-pixel
classification of parts and cluster these pixels for each part
to localize 3D key points using single depth images. Ref [17]
develops an approach for human pose estimation from depth
images by building upon Hough forests [18]. Further, [19]
transforms the depth map into a voxelized grid and performs
a voxel-to-voxel prediction using a 3D CNN. Such methods
suffer from high computational complexity, which was further
addressed in [20] where an anchor-based method applies 2D
convolution directly to depth images. Reference [21] evaluates
the relative accuracy of various 3D pose estimation methods.

We aim to use existing 2D pose estimation methods by
incorporating our distinct depth enhancement technique to
extract precise 3D information regarding the positions of body
joints and the angles of body segments. In this paper, we take
a unique approach to depth estimation that exploits various
geometric constraints and works directly on the data without
having to train a model or using complex calculations.

IV. PROPOSED SYSTEM FOR 3D POSTURE RECOGNITION

The proposed active posture monitoring system obtains
3D joint locations and joint angles from an RGB-D camera
(Intel® RealSense™ D435i) output by combining OpenPose
(on RGB image) and a unique way of processing the depth
map. For comparison, we obtain the anatomical 3D body
landmark positions using Xsens MTw™, a miniature wireless
inertial measurement unit incorporating 3D accelerometers,
gyroscopes, magnetometers (3D compass), and a barometer
(pressure sensor), as discussed in the section VI-A.

Fig. 2 illustrates the stages involved in our 3D posture
recognition approach. We start with the skeleton recognition
using the body-25 OpenPose model and then pick 11 essential
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key points of interest: neck, nose, right/left shoulder, right/left
wrist, right/left elbow, right/left, and mid-hip joint locations
representing the upper human body. Any two joints form
one skeletal segment. For instance, the neck and nose key
points, denoted by 0 and 1, comprise a skeletal segment. Once
joint positions are extracted using OpenPose, we compute
the geometrical angles of the adjacent segments. The steps
involved in the proposed 3D posture recognition are shown
in Algorithm. 1. The proposed algorithm primarily comprises
four steps: (1) Extracting 2D keypoints and joint angles using
OpenPose, (2) Denoising the depth map and calculating new
depth values from the comprehensive depth map, taking into
account the arms/limbs between each detected keypoint pair,
(3) Estimating 3D keypoints and 3D joint angles, and (4)
Classifying the posture. The time complexity of the proposed
algorithm is primarily dependent upon the entries in the global
arrays L and W , resulting in O(LW ).

A. 2D Keypoints Extraction and Image Alignment

The OpenPose deep learning network uses two subnets each
with K=6 stages [22]. One branch estimates the Confidence
Map (CM), which gives the key point locations of each object.
The second branch estimates the Part Affinity Field (PAF),
which offers all limb orientations. Thus, OpenPose has the
keypoint CMs of all the agents and limb orientations as PAFs
during inferencing, providing the XY angles. Because of its
bottom-up nature, the association between limbs and people
present in the scene is done via the Hungarian algorithm to
ensure that each keypoint κ1 is connected to at most one key-
point κ2 as specified by the pose model. As for the width, we
can estimate it by combining domain knowledge (e.g., range of
arm widths) and texture changes in the direction perpendicular
to the limb directions. Since free-flowing clothing can make
this very difficult, we will assume throughout that the clothing
largely conforms to the body shape.

Next, we use the depth cloud from the RGB-D camera to
estimate the depths and, hence, the XZ and YZ angles. For
this, we first align the RGB and depth images so that the two
overlap and are well-aligned. The depth estimation mechanism
results in a different focal length and offset than the RGB
camera; thus, the RGB image and depth map do not overlap
completely. The depth map viewed as an image is of poor
quality (see the 4th panel in Fig. 2); therefore, we cannot reli-
ably run open-pose on it and extract corresponding key points.
Thus, directly matching key points between RGB image and
depth map is impossible. Fortunately, the discrepancy between
the two is relatively stable across frames, making it easy to
align them with a simple transformation. This allows us to
describe each image pixel using its (x,y,z) coordinate. Since
the camera position and parameters are known, we also apply
the inverse projection transformation to transform the image
coordinates into the object coordinates.

B. Depth Transformation

Depth maps captured from RGB-D cameras contain many
defects in the form of both missing depth values and incorrect
ones, largely due to scattering of light (including reflection,

Algorithm 1 Human-Posture Monitoring Algorithm

1: void Posture Recognition Algorithm() //
2: Step 1: Detect 2D Keypoints and Joint angles
3: if person == True:
4: extract((xa,ya),(xb,yb), ...) using Openpose //2D Keypoints
5: extract((θab),θbc) ...) using Openpose //2D Joint angles
6: append(2D Keypoints and Joint Angles vectors)
7: Step 2: Depth Transformation
8: L ← Global array of all the lengths between keypoint pairs
9: W ← Global array of widths of all limbs and arms between keypoint

pairs
10: for each entry (l,w) in L and W :
11: estimate new depth value, d′(l,w) using Eqn. 1
12: append(Denoised 3D Depth Map)
13: Step 3: Detect 3D Keypoints and 3D Joint angles
14: if person == True:
15: extract((xa,ya,za),(xb,yb,zb), ...) using Eqn. 3 //3D Keypoints
16: extract((ϕab),ϕbc) ...) using Eqn. 4 //3D Joint angles
17: append(3D Keypoints and Joint Angles vectors)
18: Step 4: Determine Posture or Posture Transitions
19: Classify Posture using SMT assertions as shown in Example 1

diffraction, etc.). The defects may vary from frame to frame,
particularly when there is movement. Thus, we can simply
use the estimated z values of each pixel and instead need to
do some processing to remove or minimize artifacts. Many
approaches exist, ranging from simple filter-based methods
to learning-based methods that use deep neural networks
to enhance the depth maps (see, for example, the survey
paper [23]). Numerous methods have been investigated to
curate the depth map and integrate it with RGB image, which
involves some form of deep learning [24]–[26].

Instead of following a traditional approach to reducing
noise in-depth maps, we apply a novel geometric approach to
improve the quality of depth estimation for the 3D pose of the
people. A similar mechanism can be used for other significant
objects that we want to model in detail. We estimate the depth
limb-wise guided by the pose model. Let’s take an example
of the upper right arm, characterized by key points 2 and
3 as estimated by OpenPose. We will use simple geometric
arguments to calculate the depth and, hence, the angle by
assuming that the arm is roughly straight and in the form of a
cylinder. Let L denote the length (distance between key points
2 and 3) and W the arm’s radius (or half-width). In posture
applications, a precise estimate of W is not needed; therefore,
we estimate it simply using the procedure below.

To estimate W , we choose a set of equidistant points
between the keypoints of an arm segment and determine
width based on the maximal change in the color intensity
while limiting it to the maximum reasonable value under our
assumption of the clothing mainly conforming to the body. We
then take the median width as the actual width to discount
the impact of overlaps assumed to be infrequent. We have
observed that the accuracy of determining the width is close
to 92% compared to the ground truth of the width of different
body segments.

Let θ be the depth gradient to be estimated, and d(l,w) the
measured depth at a point (pixel) at a distance l∈ [0..L] from
keypoint two and a distance −W ≤w≤W from the center of
the arm boundary. Now, if the arm were a perfect cylinder and
the depth measures did not have any noise, we can map the
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Fig. 2: 3D Posture Recognition from RGB-D cameras

depth at every point in the arm to a single point by using the
following transformation:

d′(l,w)=d(l,w)− lsinθ−W +
√
W 2−w2 (1)

Fig. 3: Estimation and Curation of Depth
That is, d′(l,w)=C, where C is a constant independent of

l and w (equal to the true depth at Keypoint 2). Since the
arm is not a perfect cylinder and the pixel-in-depth maps are
noisy, we expect d′(l,w) values to be scattered but clustered
around the point C. We thus remove the outliers and find
the cluster’s center as the true depth. Practically, this requires
finding the cluster’s center using all the data, removing points
falling outside the boundary, and then repeating the process
until no outliers are found.

Since θ is unknown in the equation above, we can first
estimate C, say C0, by considering only the points with l=0.
Next, we choose l=L and compute:

sinθ=[d(L,w)−C0−W +
√
(W 2−w2)]/L (2)

These values will form a cluster, and we successively remove
the outliers and ultimately get an initial estimate of θ, say θ0.
We can now set up an iterative procedure to estimate Cn and
θn from Cn−1 and θn−1 until convergence is achieved.

The procedure will be repeated for successive limbs, starting
with the known depth at the previous key points. For example,
when computing the angle for limb (2,1), we begin with the
depth at keypoint 2, which is already known. This successive
procedure ensures joint consistency, although more sophisti-
cated procedures can also be used.

Following the depth estimation, we have the 3D vectors for
each limb. For example, the vector for a limb from keypoint
a to keypoint b is given by:

vi(vx,vy,vz)=(xb−xa,yb−ya,yb−ya) (3)

Let ϕij denote the 3D angle between two relevant limbs (e.g.,
upper and lower arms, upper arm and back, etc.) represented
by vectors vi and vj . Then ϕij is given by the dot-product
divided by the product of magnitudes, i.e.,

ϕ=(vi ·vj)/(|vi|×|vj |) (4)

C. Posture and Posture Transition Recognition

Posture recognition can be considered a multi-class clas-
sification problem, and the prevailing methods would train a
machine learning model for the classification. For example, in
the context of the posture of a knowledge worker, we have
identified five relevant poses as explained in Section VI-A,
such as crouching, slouching, etc. One could either modify
pose detection algorithms or build additional layers on top of
feature extraction neural net such as VGG19 to identify these
postures. However, we do not follow such a path; instead, we
show that we can do substantially better without requiring any
training data using an explicit logical reasoning method. We
also use the same method to recognize pose transitions that
are needed for detecting if activities requiring specific body
movements are done correctly (e.g., martial arts, dance, etc.)
Pose transition recognition using a direct machine learning
model is awkward at best.

To address pose classification, we note that each pose can
be characterized in terms of 3D angles of various body parts.
The relevant angles for our knowledge worker dataset are
depicted in Fig 2 and will be discussed later. We formulate the
classification/recognition problem using first-order logic, i.e.,
as a Boolean satisfiability problem in terms of the well-known
Satisfiability Modulo Theories (SMT) [27]. The logic formulae
obviously need to include a range of acceptable angles, which
the SMT can handle easily by including relational algebra and
arithmetic. SMT is a well-developed technology that we have
used extensively in the past and works extremely fast and well,
despite theoretical issues like the undecidability of general
first-order logic or the NP-hardness of boolean satisfiability
problems.

For example, consider the slouching posture, characterized
by a person sitting with rounded shoulders, a forward-leaning
head, and a slightly bent neck. Therefore, the slouching
posture can be described as the combination of angles 1 and
3, which indicate a slight forward bending of the head, along
with angles 5, angle 6, and angle 9, which represent the angles
at which the shoulders are bent and hanging. If any of the
following combinations of angles are outside the desired range
of values - angle 1, angle 3, or 5, 6, and 9 - the posture is
classified as “slouching” using SMT assertions. The following
statement, which is given as input to Z3 [28], a popular SMT
tool, demonstrates the recognition of slouching:

The assertions in Definition. 1 and 2 consists of five blocks.
The first line selects the underlying theory, QF LIA (linear
integer arithmetic). The following lines are used to declare
variables or functions. Variables are declared using (declare-
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(set-logic QF LIA)
(declare-const angle 1 Int), (declare-const angle 3 Int)
(declare-const angle 5 Int), (declare-const angle 6 Int)
(declare-const angle 9 Int)
(assert (and (or (> angle 1 15) (> angle 3 90))
(or (≥ angle 9 90) (> angle 3 90)) (or (> angle 1 15 (≤ angle 5
value) (≥ angle 6 value) (≥ angle 9 value))) (or (> angle 3 90)
(≤ angle 5 value) (≥ angle 6 value) (≥ angle 9 value)))
(check-sat); (get-model); (exit)

Definition 1: Assertion in SMT to classify slouching posture

const name type), where name is the variable name and type
is the variable type. Constraints/rules/assertions in SMT-LIB
are of the form (assert ...) describing the rules expressed in
the Conjunctive Normal Form (CNF). The command (check-
sat) solves the assertions defined using (assert ...). Depending
on the result, one can then use (get-model) to obtain a model
when the formula is satisfiable or (get-unsat-core) to extract
an unsatisfiable core (a subset of the rules) when the formula
is unsatisfiable. Finally, the command (exit) terminates the
solver.
(set-logic QF LIA)
(declare-const Direction)
(assert (= Direction “Forward”,“Hold”))
(declare-const L Walking Stance, R Walking Stance Int)
(declare-const L Front Kick, R Front Kick Int)
(declare-const L Front Stance , R Front Stance Int)
(declare-const L Back Stance , R Back Stance Int)
(assert (and (= L Walking Stance 90) (= R Walking Stance 180)
(assert (and (= R Front Kick, R Front Stance “Forward”)
(assert (and (= R Front Kick, R Front Stance “Forward”)
(assert (and (= L Walking Stance ,R Walking Stance 90)
(assert (and (= R Back Stance 90) (= L Back Stance 180)
(assert (and (= L Front Stance, R Front Stance “Hold”)
(assert (and (= L Walking Stance 90) (= L Walking Stance 270)
(assert (and (= L Front Kick, L Front Stance “Forward”)
(assert (and (= R Walking Stance 180) (= L Walking Stance 90)
(assert (and (= L Front Kick, L Walking Stance, R Front Kick,
R Walking Stance “Forward”)
(check-sat); (get-model); (exit)

Definition 2: Assertion in SMT to classify pose into proper or
improper in Green Belt Pattern

V. RECOGNIZING POSE TRANSITIONS

Taekwondo is a martial art similar to gymnastics, which
necessitates the precise execution of movements with proper
techniques. The exact order for pose transitions for every belt
pattern in Taekwondo is detailed in the source [29] and can
be put into a lookup table.

Our proposed 2D pose transition framework identifies the
correctness of each pose during pose transitions and monitors
the proper transition of poses in Taekwondo. For 2D key-
point joint locations extracted from RGB images, we utilize
Openpose. In this approach to 2D pose transitions, 15 distinct
key points are obtained and numbered from 0 to 14, while
the remaining key points (15–24) are omitted. Equation.4 is
utilized in a two-dimensional coordinate system to estimate the
angle between any two skeletal segments. Subsequently, we re-
trieve the accurate sequence of pose transitions by maintaining
a lookup table. Each pose within the transition sequence is
evaluated for its correctness using the SMT tool, considering
factors such as the angles of movement in various body parts

like legs and arms. Taekwondo instructors cross-check and
validate these angles to ensure accuracy and reliability.

Each pose is classified based on the angle values of the
athlete’s legs and arms. Let us examine a green belt movement
pattern, waking stance low block, shown in Fig. 5. This pattern
entails an athlete maintaining a straight stance while extending
the right arm in a straight line while the other arm is positioned
at the waist. When the athlete assumes this position while
standing, exhibiting rounded shoulders, a forward-leaning head
or back, and arm placement that deviates from the permitted
range, it can be considered an improper pose. A sequence of
poses that begins with such poor posture and continues with it
is not beneficial in training for particular belt patterns. Hence,
the waking stance low block constitutes an improper posture
characterized by a combination of angles 1 and 3, signifying
a marginal forward inclination of the head and the back, in
addition to angles 5, 6, and 9, denoting the positions at which
the shoulders bend. Additionally, the extension of the right arm
in a straight position can be verified through angle 7 (these
angles follow the same numbering as in Fig. 2). The posture is
considered “improper” based on SMT assertions if any of the
subsequent combinations of angles fall outside the intended
range of values. The SMT assertions to classify the walking
low stance as improper follow a similar syntax as in Definition
1. The SMT tool verifies the correctness of each posture during
pose transitions, allowing instructors to provide feedback and
correct the postures of their students while they train.

VI. EXPERIMENTAL SETUP AND RESULTS

In this section, we evaluate our posture recognition frame-
work on both of our collected datasets discussed below. The
following metrics determine the effectiveness of our frame-
work: (a) the accuracy and (b) the average execution time of
posture recognition. The experiments were performed on a
computer with Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz,
32 GB RAM, and 1 TB SSD.

A. Data collection

To evaluate the performance of the proposed method, we
created a new RGB-D dataset using the Intel® RealSense™
D435i. In addition to RGB images and depth maps for each
observation, the dataset includes the 3D joint coordinates using
a second-generation wireless inertial-magnetic motion tracker
by Xsens.

1) Posture Dataset: The data collection was designed to
replicate an authentic office work environment, focusing on
a worker engaged in computer-related tasks. We organized a
desk, chair, keyboard, and mouse to emulate a typical work-
station. The Intel® RealSense™ D435i camera was positioned
precisely on the same axis as the chair to capture detailed
images. This setup was maintained at 250 cm from the subject,
elevated to a height of 185 cm, and oriented at an angle of
-15 degrees relative to the ground, as shown in Fig. 4.

The participant was outfitted with the Xsens motion capture
system, which comprises 17 strategically placed sensors on
the subject’s body, as also depicted in Fig. 4. The sensor
locations were chosen to be at vital anatomical landmarks
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Fig. 4: Experimental Setup
TABLE I: USA standards for sitting posture angles

Sitting Posture USA standards
Forward head tilt Maximum of 15°
Upper arms and forearms position Elbow angles between 70° and 135°
Hands and wrists position Maximum wrist extension (bent up) of 10° or flexion

(bent down) of 30°
Vertical viewing angle 15–25° below the horizontal eye level
Shoulder angle 90°
Forward position Adjustable max. of 330 mm from seat reference point
Backrest angle for swayback post. Adjustable between 90° & 120° from horizontal
Upright Sitting angle 90°
Armrests height Adjustable between 170 & 270 mm above seat

for comprehensive postural analysis: the head, both right and
left shoulders, sternum, upper arms, forearms, hands, pelvic
region, upper legs, lower legs, and feet. Each IMMU sensor
in this system contains a 3D accelerometer, a 3D gyroscope,
and a 3D magnetometer. The sensors are 34.5 (W), 57.8 (L),
and 14.5 (H) mm in size, with a mass of 0.027 kg and powered
by a battery. The Xsens software uses a Kalman filter to fuse
the data of accelerometers, gyroscopes, and magnetometers to
estimate the orientation of each sensor. The acquired 3D sensor
data serves as the ground truth (GT) for keypoint locations
and joint angles only for the Posture dataset, which is used
to estimate the MSE between the predicted 3D keypoints and
the joint angles relative to the GT. The acquired 3D sensor
data is also annotated with one of the five sitting postures,
which serves as the benchmark for evaluating the accuracy
of posture recognition in the experiments carried out on the
Posture Dataset.

During the data acquisition phase, seated at the workstation,
the subject underwent five separate data collection sessions.
Each session spanned 120 seconds. The Intel® RealSense™
system captured 1100 RGB and depth frames throughout these
sessions. Concurrently, the Xsens system, functioning as a
reference, recorded data at a sampling rate of 60Hz, resulting
in a collection of 7200 samples per sensor. This dual-system
approach facilitated a comprehensive and comparative analysis
of the dataset. The dataset primarily comprises sitting postures,
mainly consisting of (1) Normal posture characterized by
sitting upright, with the back supported by the chair and
hands on either the lap or the desk. (2) The crouching posture
sits upright, with the neck bent downwards and the hands
resting on the lap or desk. (3) The hunchback position involves
sitting with a rounded back, a forward head close to the table,
and hands either on the lap or the table. (4) The slouching
posture is characterized by sitting with rounded shoulders and
a forward head tilt. (5) Swayback posture refers to sitting with
the hips in front of the body’s midline. Table I shows various
sitting postures and the ergonomics standards and guidelines
for computer workstation design, as outlined [30].

2) Taekwondo Dataset: The dataset was developed specif-
ically with data on movements performed by Taekwondo
athletes. To achieve this task, we collected videos of students at
Darimar Martial Arts, Columbus, Ohio. The acquired dataset
comprises various Taekwondo patterns, each symbolizing a
distinct movement executed by an athlete for a specific belt.

The patterns include the following belt colors: white, yel-
low, orange, green, and black. Understanding patterns is a
crucial component of Taekwondo training, as explained in
the Taekwondo America student manual [29]. Patterns aid in
the development of proper concentration and technique. The
principal objective of this dataset is to gather data on the
movements in any given belt pattern executed by Taekwondo
athletes and to utilize this information for instructional and
training purposes for students. We have a collection of 35
videos in total, which feature either a single student or multiple
students performing the movements in sequence for each belt
pattern. The videos were captured primarily using the camera
on the phone. Fig. 5 (a) shows the walking stance low block,
and (b) shows the walking stance reverse punch of a student
in a dark green belt pattern.

(a) (b)

Fig. 5: Green belt movement patterns (a) walking stance low
block, (b) walking stance reveres punch

Table. II shows the accurate order of 20 movement patterns
in the green belt, along with the validated angles and direction
of the arm movements, as confirmed by the master of Darimar
Martial Arts. A 10 to 15 degree deviation in body positioning
is commonly considered as acceptable for posture detection
and aligns with ergonomic studies, sports analysis, and motion
tracking [31], as well as Taekwondo masters’ advice for main-
taining posture to optimize performance and prevent injuries.
The vision algorithms themselves can usually achieve much
better accuracies than 10-15 degrees; for instance, markerless
motion capture systems employing vision algorithms attain
angular accuracy of 1 to 3 degrees, ensuring minimal deviation
between estimated and actual joint angles.
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(a) (b) (c)

Fig. 6: Depth Transformation Results (a) Original depth image (b) DECNN, (c) Our depth transformation method

(a) (b) (c)

Fig. 7: Histogram Distribution of Depth after Depth Transformation (a) Original depth image (b) DECNN, (c) Our depth
transformation method

TABLE II: Movements in Green Belt Pattern and the correct
angles and direction of movements

Movement Angle/Direction Movement/Kick
1 90d Left L Walking Stance
2 Forward R Front Kick ->R Front Stance
3 180d Right R Walking Stance
4 Forward L Front Kick ->L Front Stance
5 90d Left L Walking Stance
6 Forward R Walking Stance
7 90d Left R Back Stance
8 Hold Position Shift Foot Into L Front Stance
9 180d Right L Back Stance
10 Hold Position Shift Foot Into R Front Stance
11 90d Left L Walking Stance
12 Forward R Walking Stance13 270d Left L Walking Stance

14 Forward R Front Kick ->R Front Stance
15 180d Right R Walking Stance
16 Forward L Front Kick ->L Front Stance
17 90d Left L Walking Stance
18 Forward R Walking Stance
19 Forward L Front Kick ->L Walking Stance
20 Forward R Front Kick ->R Walking Stance

B. Depth Transformation Results

As mentioned in Section. IV-B, the depth maps obtained
from RGB-D cameras are processed per frame to minimize
the effect of noise. We have compared our methodology with
a cutting-edge methodology in [26] where the authors have
proposed a lightweight Convolutional Neural Network (CNN)
specifically designed to eliminate noise and improve the qual-
ity of the depth map. The network comprises three layers that
perform high-dimensional projection, missing data comple-
tion, and image reconstruction. It takes grayscale and depth
images as inputs. The loss function utilizes an Euclidean-
based distance metric to highlight the impact of edges, which

quantifies the disparity between the network output and the
corresponding ground truth. The drawback of this proposed
DECNN framework is the amount of preprocessing required
on the training data before feeding into the model. The
preprocessing procedure has six steps: intensity equalization,
bilateral filtering, edge extraction, watershed segmentation,
segment average padding, and intensity quantization. After
preprocessing, the unnecessary detail is weakened, and edges
are enhanced.

Our depth transformation preprocessing includes two steps:
(1) An offline alignment utilizing a bi-linear interpolation
technique that relies on the scale factor between two images.
It is necessary to perform this step because the field of view of
the RGB and depth cameras differs in the Intel® RealSense™
D435i camera. The d435i depth camera has a field of view of
87° × 58°, while the RGB camera has a field of view of 69°
× 42°, and (2) Applying a Fast Non-local means denoising.
Fig. 6 (a), (b), and (c) show the raw depth image as captured
from the depth camera and the results of enhancing depth maps
using DECNN and our proposed method, respectively. Our
depth transformation, explicitly targeting the person without
significant preprocessing, has noticeably improved the spatial
artifacts compared to the DECNN approach. Fig. 7 (a), (b),
and (c) display the histogram of depth values for the raw depth
image, the transformed depth images using DECNN, and our
proposed method, respectively. The x-axis represents the depth
values, while the y-axis represents the number of pixels with a
specific depth value on the x-axis. The observed lack of sharp
peaks in Fig. 7(c) provides a good indication that our results do
not suffer from significant depth “holes”. Further, our proposed
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approach to enhancing the depth map is corroborated by the
much fewer black dots in Fig. 6(c).

C. 3D Keypoints and Joint Angle Estimation Results

Our proposed 3D posture recognition framework uses RGB-
D input images. Using the depth information, a set of 2D joint
locations and segment angles on the body are transformed
into 3D. Fig. 8 (c) demonstrates that our proposed 3D posture
recognition is highly accurate, as evidenced by the minimal
deviations between the 3D key points obtained through our
framework and the ground truth (GT) represented by the grey
points and the line.

D. 3D Posture Recognition Results

We evaluate the performance of our proposed posture recog-
nition using two metrics: (1) Accuracy in classifying the sitting
postures with our proposed posture recognition framework, (2)
Mean Squared Error (MSE) relative to ground truth (GT) for
identifying 3D keypoints and joint angles, and (3) Accuracy
in determining the correct sequence and posture of each pose
during pose transitions using the pose transition framework.
The GT is given by the Xsens system shown in Fig. 4 as
discussed in section VI-A1.

We evaluate the accuracy and MSE of our posture recog-
nition framework on a widely used public dataset called
Human3.6M [32], which includes 3D information on joint
angles, key points, and depth maps. The dataset is structured
into 15 training motions, primarily focusing on sitting poses,
particularly emphasizing categories such as sitting on a chair
and engaging in various activities while seated, such as talking
on the phone. We noticed that the poses captured for these
activities also include the five categories of sitting postures
we examined in this study. These postures can be utilized to
assess the accuracy of our posture recognition framework.

1) Comparison with Machine Learning (ML) baseline mod-
els: We compare the performance of our proposed 3D Posture
Detection framework with existing Machine Learning models
as shown in Fig. 9(a), where the x-axis indicates the ML
models used for comparison and the y-axis shows accuracy.
We include different classifiers for comparisons like Decision
Tree (DT), Support Vector Machine (SVM), Naı̈ve Bayes
(NB), Random Forest (RF), and Bagging Classifier (BC). The
input to these ML models is the estimated 3D key points and
the joint angles. This data is sampled every five seconds and
is labeled into one of the five categories of sitting posture as
explained in section VI-A1. We observe that the ensemble
learning-based models are showing better results because
they aggregate results of individual weak classifiers based
on different strategies. Still, our satisfiability-based method
outperforms all the ML baseline models.

2) Comparison with time-series baseline models: To show
the effectiveness of our proposed 3D posture detection frame-
work on both the datasets, we compare them with several
baselines that work with multivariate time series classification
using sktime library [33] as shown in Fig. 9(b). We train
the following time-series classifier models: Supervised Time
Series Forest Classifier (STSF), Time Series Forest Classifier

(TSFC), Time Series Support Vector Classifier (TSSVC),
Random Interval Spectral Ensemble (RISE), Ensemble of Bag
of Symbolic Fourier Approximation Symbols (BOSS). As
shown in Fig 9 (b), our proposed posture detection framework
achieves better accuracy than all of these time-series models.

3) Comparison with state-of-the-art 3D pose recognition
models: For completeness, we present a qualitative analy-
sis that compares our results against other 3D human pose
estimation methods proposed in [19], [20], [34], and the
performance results are shown in Fig 9 (c). In [34], authors
have proposed a method to estimate 3D human pose from
RGB-D images. The model comprises three modules. Initially,
a 2D pose estimator generates heatmaps from the RGB im-
age, serving as an initial prediction crucial for subsequent
3D estimation stages. Following this, the 2D fusion module
integrates these heatmaps with the depth image to produce
a point cloud, where each point is associated with a color
feature vector. These downsampled points are inputted into a
3D learning module to generate point-wise features. Finally, a
dense prediction module generates the 3D pose by point-wise
voting. Ref [20] presents an anchor-based regression network
for 3D hand and body estimation from a single depth image,
which consists of 3 branches driven by a 2D CNN backbone
network without deconvolutional layers. Specifically, the three
branches are responsible for predicting in-plane offsets be-
tween anchor points and joints, estimating the depth value of
the joints, and providing informative anchor point proposals.
V2V-PoseNet [19] is a 3D hand and human pose estimation
using a single depth map. This approach converts the 2D
depth map into a 3D voxel representation and further processes
it using a 3D CNN model, which predicts the per-voxel
likelihood for each key point. The results in Fig. 9(a) and (c)
show that 3D posture recognition approaches work better than
traditional ML approaches because they can handle sequential
data and take into account how data changes over time. Yet,
our proposed satisfiability-based approach recognizes posture
with the highest accuracy compared to ML, time series, and
state-of-the-art 3D posture recognition models.

4) MSE and MPJME of Proposed 3D Posture Recognition
Framework: To assess the accuracy of our 3D posture recogni-
tion approach to the existing ground truth in both the posture
dataset and the Human3.6M data, we present a qualitative
analysis that compares our results against other 3D human
pose estimation methods in terms of Mean Squared Error
(MSE), which is the relative mean square error between the
ground truth 3D coordinate of the joints with respect to the
estimated 3D coordinates of the joints defined as:

MSE=
1

N

N∑
n=1

∑
i,j,k

∥H∗
n(i,j,k)−Hn(i,j,k)∥2 (5)

Where H∗
n(i,j,k) and Hn(i,j,k) are the ground-truth and

estimated keypoint locations for nth key point, respectively,
and N denotes the number of key points. Further, we also use
Mean Per Joint Position Error (MPJPE), a common metric
used to evaluate the performance of human pose estimation
algorithms. It measures the average distance between the
predicted joints of a human skeleton and the ground truth
joints. The results of both MSE and MPJME are presented
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(a) (b) (c)

Fig. 8: 3D Posture Recognition Results Compared to GT (a) Original RGB-Image, (b) 2D Keypoints, (c) 3D Estimation Results
with Grey Points and a Line Representing the GT

(a) (b) (c)

Fig. 9: Comparison of Accuracy of proposed 3D posture detection framework on both datasets to (a) ML classifier models,
(b) Time-series classifier models, and (c) State-of-the-Art 3D posture recognition models

(a) (b) (c)

Fig. 10: Comparison of Accuracy of pose transition framework on Taekwondo dataset to (a) ML classifier models, (b) Time-
series classifier models, (c) Average Running Time Comparison

in Table III. We can see that our approach’s performance is
better than other methods, validating the effectiveness of our
3D posture recognition framework.

E. Pose Transition Results

We assess the efficiency of our proposed pose transition
model by measuring its accuracy in accurately determining
the sequence and the correctness of each posture during
pose transitions. Each frame in the Taekwondo dataset is
assigned a label indicating the transition between poses, which
corresponds to a specific belt pattern. Additionally, the la-
bel indicates whether the posture in the frame is proper or
improper. Since we have already demonstrated accurate pose
identification in the previous application, our goal here is to
determine the accuracy of the pose transition framework.

We compare our pose transition framework to the traditional
ML and the time-series models considered in Sections VI-D1
and VI-D2. For the pose transition framework, the input to the
state-of-the-art ML/DL or time-series models are frame-wise
labeled postures and the movements in specific belt patterns(as

shown in Table II to identify the correct sequence of posture
transitions. The SMT assertion to classify each pose during
pose transition in this green belt movement pattern is shown
in Definition 2. Additionally, a decision function is used to
determine if the sequence of posture transitions corresponds
to a specific belt pattern. Fig. 10 illustrates the accuracy of
our pose transition framework in comparison to traditional
machine learning (ML) and time series (TS) models. The x-
axis represents the different models being considered, while
the y-axis represents the corresponding accuracy values. Our
proposed approach demonstrates better accuracy compared to
all the machine learning (ML) and time series (TS) models
that were considered.

Fig. 10(c) shows the inference time of our framework for
both datasets against the state-of-the-art 3D posture recog-
nition methods considered in section VI-D3. Our reported
time includes OpenPose-based key point detection, estimation
of joint angles, and checking for satisfiability in classifying
the postures. For deep learning-based models, the inference
time is used for comparison. It is seen that our inference
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TABLE III: Comparison of MSE of 3D human pose estimation

Methods Datasets MSE MPJME
A2J

3D Pose
Posture 32.5 42.3
Human 3.6M 30.7 40.8

V2V-PoseNet Posture 36.3 45.3
Human 3.6M 31.4 43.1

3D-Pose Posture 34.35 45.2
Human 3.6M 34.1 41.4

Ours Posture 21.2 36.3
Human 3.6M 22.5 34.5

time is the lowest. The time DL models require to classify
postures is proportional to the number of layers and the model
size. However, our proposed framework uses DL (OpenPose
model) solely for body joint key points detection, thereby
maintaining a decent inference time to recognize the proper or
improper posture. The average time taken by our framework
to acknowledge the proper or improper postures for posture
and taekwondo datasets is 610 and 590 ms, respectively. It is
essential to mention that these experiments were conducted on
a machine simulating an edge device, not an edge controller
(EC) that typically has much higher processing capabilities.

F. Running Time Comparison

Furthermore, analyzing every frame is unnecessary for both
of these use cases. Instead, we can use an approach similar
to the one in [35] to filter out frames based on the change
and send only a subset to the EC. Thus, with only ∼10
frames/sec, real-time posture recognition/ pose transitions may
be possible. However, activities involving rapid movements,
such as gymnastics or dance, would require much higher
resources for real-time posture monitoring.

VII. CONCLUSIONS

In this paper, we studied the problem of detecting correct
posture and pose transitions, which are crucial in numerous
human activities, from sitting in front of a computer screen
to sports and performing arts. We build a spatio-temporal
reasoning infrastructure on top of traditional computer vision
algorithms to recognize and analyze the poses and pose
transitions. For the pose, we use a 2D human stick model,
openpose, and enhance it further to determine the depth and
relevant 3D angles, which can be compared against the existing
standards. We specifically consider the examples of sitting and
Taekwondo and show that our method outperforms all machine
learning, deep learning, and time series-based methods in
both accuracy and execution time despite not needing any
specialized training data. Our method does require setting up
the assertions. This task can be automated to a large extent,
and will be examined in the future.
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