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Abstract—Correct pose/posture is crucial in most human activ-
ities, and increasingly in using computer screens of many form
factors. In performing arts, both the correct pose and correct
pose transitions are important for acceptable performance and
safety. We show in this paper that the pose-relevant angles can
be estimated in real-time and accurately from RGB-D camera
views, using a spatio-temporal reasoning infrastructure on top of
basic computer vision algorithms. The latter is used to determine
poses of the 2D human stick models, which are then enhanced
further using depth to determine relevant angles and compare
them against the standards. We apply the technique for the
case of a knowledge worker sitting in front of a computer
screen and also to tae-kwando, where the pose transitions are
also crucial. In either case, our method does not require any
additional training but outperforms all others, including those
using machine learning, deep learning, and time series based
prediction. Furthermore, the superior performance is seen not
only in the estimation accuracy but also the estimation speed.

Index Terms—Posture Recognition, Depth Correction, RGB-D
cameras

I. INTRODUCTION

Correct pose/posture is crucial in numerous different con-
texts and may be important from many different perspectives
such as aesthetics (e.g., dancing), successful performance of
an activity (e.g., gymnastics), avoiding serious injuries (e.g.,
lifting weights), avoiding repetitive injuries (e.g., assembly
line work), and mitigating adverse effects of incorrect sitting,
which has been called the “new smoking” [1]). In some cases,
it is not just the pose, but pose transition that is also crucial
(e.g., dancing, martial arts, gymnastics, etc.)

The goal of this paper is to demonstrate that we can
accurately determine the pose-relevant angles and dimensions
accurately from RGB-D camera views, and thereby enable
comparison of the pose and pose transition against the given
standards or requirements. To accomplish this, we build
a spatio-temporal reasoning infrastructure on top of basic
computer vision algorithms that detect objects (humans) and
construct 2D stick models of their poses. We consider two
distinct applications in this paper. Our first application is a
knowledge worker sitting in front of a computer monitor. In
this case, we obtained highly accurate and detailed ground-
truth measurements about the posture using a set of senors. By
comparing our results against these, we demonstrate that our
video analytics method provides highly estimates of various
angles. Our second application is Tae-kwando where we an-
notated the frames manually to allow for accuracy estimation.

In this application, both the pose and the sequence of pose
transitions is crucial. In either case, our method does not
require any training on the labelled postures, since it use
pretrained OpenPose as an underlying model, whose output is
further processed to accurately estimate the depth dimension
and from there estimates of the angles.

The rest of the paper is organized as follows. Section II
discusses the existing work-related posture standards and
posture (pose) modeling in the computer vision context. Sec-
tion III defines our methodology for modeling and tracking
the posture. Section IV presents the experimental results, and
then section V concludes the discussion.

II. POSTURE STANDARDS AND MODELING

A. Posture Standards

Human posture in the context of ergonomics has been stud-
ied extensively. Posture very much depends on factors such as
chair height, contact with the backrest, screen height/distance,
etc.; thus, these also become part of various ergonomics
standards. such as those defined for USA, Australia, Europe,
and Japan [2]. Several methods have been developed for
assessment of body poses for various types tasks, including
REBA, RULA, WISHA, OWAS, etc. [3], [4], most of which
are directed toward estimating the risk of musculoskeletal
disorder (MSD). We review some of these briefly in the
following.

Rapid Entire Body Assessment (REBA) (https://ergo-plus.
com/reba-assessment-tool-guide/) uses a systematic way to
evaluate whole body postural MSD and ergonomic design risks
associated with job tasks. REBA was intended to evaluate
required body posture, forceful exertions, type of movement or
action, repetition, and coupling by manually filling out a form.
A score is assigned for each of the following body regions:
wrists, forearms, elbows, shoulders, neck, trunk, back, legs and
knees. After the data for each region is collected and scored,
tables on the form are then used to compile the risk factor
variables, generating a single score that represents the level of
MSD risk.

Rapid Upper Limb Assessment (RULA) (https://ergo-plus.
com/rula-assessment-tool-guide/) assesses biomechanical and
postural load requirements of job tasks/demands on the neck,
trunk and upper extremities. RULA also involves filling out a
form manually to evaluate required body posture, force, and
repetition. Based on the evaluations, scores are entered for
each body region in section A for the arm and wrist, andThis research was supported by NSF grant CNS-1527346.



section B for the neck and trunk. It too generates a single
score for MSD risk based on this data.

WISHA Lifting Calculator (https://ergo-plus.com/
wisha-lifting-calculator-guide/) was developed by the
Washington State Department of Labor and Industries and
is based on NIOSH research on the primary causes of
back injuries. This lifting calculator can be used to perform
ergonomic risk assessments on a wide variety of manual
lifting and lowering tasks, and can be also used as a screening
tool to identify lifting tasks which should be analyzed further
using the more comprehensive NIOSH Lifting Equation.

Changes in posture provide valuable information about
stress and attention level. Several gadgets have also been
developed for posture monitoring such as textile pressure
sensor [5], a sensored smart cushion for the chair back [6],
an ”IoT cushion” and AI based posture training [7].

Fig. 1. Sitting Posture Recommendations

Recently, there has been attempt to apply these standard
to video determined postures. There are some proprietary
tools to check worker posture using a smartphone, such
as https://www.tumeke.io/, or https://www.ehs.com/2020/03/
your-work-from-home-toolbox/, however, it is unclear how the
tools work. However, video based determination becomes a
bit difficult because of lack of completeness in the standards.
In particular, while some angles are specified, several others
are not, as shown in Fig II-A. In these cases, we make some
assumptions. In particular, qualitative specifications like “back
should be straight” do not provide tolerance; therefore, we
assume a tolerance value value of ±10◦.

B. Video Based Posture Modeling

Accurately recognizing posture from videos requires 3D
structure of the body, which is difficult to obtain from reg-
ular RGB cameras in spite of a significant amount of work
to estimate depth from plain RGB frames or “monocular”
images [8], [9]. These methods must necessarily depend on
rather complex deep learning and thus have poor accuracy
and are too slow for real-time use. A direct estimation of
depth requires either a scanning LIDAR or depth (or RGB-D)
cameras. RGB-D cameras are becoming quite popular along
with a continuing decrease in prices. We expect that RGB-D
cameras would become commonplace and thus support depth

estimation in work environments. Nevertheless, much of work
in the literature concerns RGB cameras. Our approach is to
enhance known 2D methods with our unique depth processing
to extract 3D information.

Recognizing humans and other objects and tracking them in
successive RGB camera video frames is very well developed
art. For real-time, use, the single pass algorithms such as SSD
(single-shot multibox) versions [10] and YOLO (you only look
once) versions and including the recent YOLOv7 [11] are most
appropriate. Object tracking is rather straightforward so long
as the object remains in view, but persistent tracking can be
challenging and largely studied using rather heavy-duty deep
learning [12]. Although our logic based method along with
object attributes can easily do persistent tracking, we do not
focus on this aspect.

Human pose estimation based on images is a very well
developed area, with several pose models and algorithms.
2D pose models assume a “stick model” of human and
recognize individual segments of the model. The algorithms
can be classified as top-down (detect each object and then
its parts), bottom-up (detect all parts and then assemble into
objects), or combined [13]. Bottom-up methods are faster
than top-down when the scene has many people, but may
assign parts to the wrong people. YOLOv7 mentioned above
is a top-down method and seems to work well. The survey
paper [14] provides a comprehensive overview of popular
top-down approaches for human pose estimation. A highly
popular botttom-up method is OpenPose [15]. It define a
number of keypoints in the body to create a skeleton that
represents various poses. Sitting posture recognition based
on OpenPose is discussed in [16]. We shall use OpenPose
in this research. Other bottom-up methods include Higher-
HRNet [17], Posenet, and Movenet [18]. Note that these
algorithms recognize only human objects and thus need to
be used with others to parse the entire image.

Fig. 2. Body 25
Model of OpenPose

As such OpenPose only concerns the
2D image (i.e., no depth). Furthermore,
the body segments are simply sticks
without any width information, thus the
width also needs to be determined by
further analysis of the 2D image.1 The
depth information is contained in the
in the “3D point cloud” generated by
both RGB-D camera and scanning LI-
DAR. Depth maps generally have a lot
of defects and noises due to varying
levels of ambient illumination and light
diffraction/reflection from various sur-
faces, edges, and points. Numerous methods have been investi-
gated to curate the depth-map and integrate it with RGB image,
but all previous methods concern smoothing the depth map
without of with the help of the RGB image and involve some
form of deep learning [19]–[21]. Reference [22] evaluates

1OpenPose does use a single width hyper-parameter for all limbs, but that
is not useful.
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the relative accuracy of various 3D pose estimation methods.
Reference [23] provides a survey of various methods.

It is worth noting that although true 3D (human) body/pose
models (as opposed to stick models) do exist [13], [24], they
are not usable for real-time recognition and will be deeply
affected by clothing. The 2D models themselves vary; for
example, called COCO (or body 17) does not have key points
for hands/feet, but the body 25 human model shown in Fig. 2
does. Another model called Blazepose [25] is even more
detailed than body 25. In this paper, we use body 25; it is
possible to similarly use others for applications where precise
pose of hands/fingers and feet/toes is important.

III. PROPOSED SYSTEM FOR ACTIVE POSTURE
MONITORING

The proposed system for active posture monitoring gets
3D body joint locations using OpenPose and an RGB-D
camera. This tests the usefulness of the suggested method
for measuring landmarks from a range of common postures.
The anatomical 3D body landmark positions are identified by
Xsens MTw™, a miniature wireless inertial measurement unit
incorporating 3D accelerometers, gyroscopes, magnetometers
(3D compass), and a barometer (pressure sensor), as discussed
in the section IV-A were used as references to quantify the
error levels. This study uses an RGB-D camera with active
stereoscopic technology (i.e., Intel® RealSense™ D435i).

A. OpenPose based Keypoints Extraction

Fig. 3 illustrates the stages involved in our approach. We
start with the skeleton recognition using the body-25 Open-
Pose model and then pick 11 essential key points of interest:
neck, nose, right/left shoulder, right/left wrist, right/left elbow,
right/left, and mid-hip joint locations representing the upper
human body. Any two joints form one skeletal segment. For
instance, the neck and nose key points, denoted by 0 and 1,
comprise a skeletal segment. Once joint positions are extracted
using OpenPose, we compute the geometrical angles of the
adjacent segments.

To understand how OpenPose determines the angles of
various limbs, we briefly describe its functioning. OpenPose
uses the first 10 layers of the popular deep convolutional
network VGG-19 [26] to extract features before proceeding
with pose detection. For the latter, the OpenPose network
uses two branches [27], each with K=6 stages. One branch
estimates the Confidence Map (CM), which gives the keypoint
locations of each object. The second branch estimates the Part
Affinity Field (PAF), which gives orientations of all the limbs.

During inferencing, OpenPose has the keypoint CMs of all
the agents and limb orientations as PAFs which provides the
XY angles. Because of its bottom-up nature, the association
between limbs and people present in the scene. This is done
via the Hungarian algorithm to ensure that each keypoint κ1

is connected to at most one keypoint κ2 as specified by the
pose model. This also implies that in crowded scenes, the limb
assignment and hence the angles could be incorrect; however,
this should not be an issue in most posture applications. As

for width, we can estimate it by combining domain knowledge
(e.g., range of arm widths) and texture changes in the direction
perpendicular to the limb directions. Since free-flowing cloth-
ing can make this very difficult, we will assume throughout
that the clothing largely conforms to the body shape.

Next, we use the depth cloud from the RGB-D camera
to estimate the depths and hence the XZ and YZ angles.
For this, we first align the RGB and depth images so that
the two overlap and are well-aligned. The depth camera has
a somewhat larger focal length than the RGB camera, and
thus the images do not overlap. Furthermore, the depth of
the image quality is not good enough to run OpenPose on it
and accurately locate the corresponding key points. For this
work, we have used an ad hoc correction method since the
discrepancy does not change across different frames. After
alignment, we take the raw depth measure at the point on a
limb in the RGB image and then curate the depth to remove
noise. We also apply the inverse projection transformation to
transform the image coordinates into the object coordinates.

Fig. 3. Posture Recognition from RGB-D cameras

B. Depth Transformation

1) Depth Map Correction: Depth maps captured from
RGB-D cameras consist of Gaussian noise and hole pixels,
which can be categorized as spatial artefacts, along with some
temporal fluctuations, which can be categorized as temporal
artefacts. Hence, the input depth map must first be processed
to reduce such artefacts. There are many approaches for
noise reduction in depth maps, ranging from simple filter-
based methods to learning-based methods that use deep neural
networks to enhance the depth maps (see for example the
survey paper [23]).

Instead of following a traditional approach to reducing
noise in depth maps, we apply a more sophisticated approach
to improve the quality of depth maps. Our approach for
reducing the noise and filling the region of hole pixels involves
estimating depth limb-wise. Let’s take an example of the upper
right arm, characterized by key points 2 and 3 as estimated
by OpenPose. We will use simple geometric arguments to
estimate the depth and, hence, the angle by assuming that
the arm is straight and roughly in the form of a cylinder. Let
L denote the length (distance between key points 2 and 3)
and W the arm’s radius (or half-width) as estimated above.

3



Let θ be the depth gradient to be estimated, and d(l,w) the
measured depth at a point (pixel) at distance l∈ [0..L] from
keypoint 2 and a distance −W ≤w≤W from the center of
the arm boundary. Now if the arm were a perfect cylinder and
the depth measures did not have any noise, we can map the
depth at every point in the arm to a single point by using the
following transformation:

d′(l,w)=d(l,w)− lsinθ−W +
√

W 2−w2 (1)

Fig. 4. Estimation and Curation of Depth

That is, d′(l,w)=C, where C is a constant independent of
l and w. Now, since the arm is not a perfect cylinder and the
pixel-in-depth maps are noisy, we expect d′(l,w) values to be
scattered but clustered around the point C. We thus remove
the outliers and find the center of the cluster as the true depth.
Practically, this requires finding the cluster’s center using all
the data, removing points falling outside some boundary, and
then repeating the process until no outliers are found.

Since θ is unknown in the equation above, we can first
estimate C, say C0, by considering only the points with l=0.
Next, we choose l=L and compute:

sinθ=[d(L,w)−C0−W +
√
(W 2−w2)]/L (2)

These values will form a cluster, and we successively remove
the outliers and ultimately get an initial estimate of θ, say θ0.
We can now set up an iterative procedure to estimate Cn and
θn from Cn−1 and θn−1 until convergence is achieved.

The procedure will be repeated for successive limbs starting
with the known depth at the previous key points. For example,
when computing the angle for limb (2,1) we start with the
depth at keypoint 2, which is already known. This successive
procedure ensures joint consistency, although more sophisti-
cated procedures can also be used, which will be seen in future
works.

C. Extracting 3D Joint Angles and Keypoints

OpenPose is a highly reliable tool for extracting skeletal
structures not trained on pre-defined body poses. It isolates
each joint from the overall body pose. In this work, we utilize
OpenPose to extract skeletal joint coordinates, which returns
the 2D coordinates (xi,yi,ci) for i = 0,1,..24 from an RGB
image using CMs and PAFs; xi and yi are the abscissas
and ordinates respectively of each 24 BODY 25 body parts,
while ci represent their confidence measure. Hence running
OpenPose on the RGB images collected from both the datasets
described in the Section.IV-A yields a vector of 2D skeleton
coordinates of 25 human body joints. However, we exclusively

focus on 19 distinct key points for this study, thereby omitting
the remaining key points (17–24). As described in the previous
section, the calculated limb-wise transformed depth values are
concatenated with the 2D skeleton coordinates, resulting in a
3D vector (xi,yi,d

′
i).

Further, any two joints form one skeleton segment. And we
have a total of 18 skeletal segments that are defined as Si =
{S1,S2..,S18}. Each skeletal segment Si consists of two joint
points; for example, S1 comprises joints {j0,j1} where j0 is
keypoint joint 0 and j1 is keypoint joint 1, as shown in Fig. 2.
The spatial coordinates of two joints in any skeletal segment
are expressed as a 3D vector expressed as ja ={xa,ya,za} a
= 1,2...18 and jb = {xb,yb,zb} b = 1,2...18, b̸=a. Then the
direction vector of the linear equation of skeletal segment Si

is denoted as follows:
vi(vx,vy,vz)=(xb−xa,yb−ya,yb−ya) (3)

Thus the angle between the two skeletal segments Sa and Sb

is defined as:

Angle=arcos(
vxa ∗vxb+vya ∗vyb+vza ∗vzb√
v2xa ∗v2ya+v2za+v2xb ∗v2yb+v2zb

) (4)

D. Satisfiability Modulo Theory (SMT) based Posture Recog-
nition

Satisfiability involves determining whether a formula ex-
pressing a constraint has a solution. The popular constraint
satisfaction problem has mainly has two variants, 1) SAT,
which determines whether a formula composed of Boolean
variables connected by logical conjunctions can be converted
to true by selecting true or false values for its variables, and 2)
SMT involves testing the satisfiability of first-order formulas
over linear integer or real arithmetic, or other theories. A first-
order formula combines logical connectives, variables, quan-
tifiers, function symbols, and predicate symbols. A satisfiable
solution, also called a model, interprets the variable, function,
and predicate symbols that satisfy the formula.

We formulate our posture recognition mechanism as a
Boolean satisfiability problem using the famous SMT (Satisfi-
ability Modulo Theory) [28] based tools and linear arithmetic
theory. Since we have five different poses, as explained in
Section IV-A, pose recognition is a multi-class classification
problem. Each pose, depicted in Fig 3, comprises certain an-
gles. Various combinations of angles can be used to determine
if a pose is incorrect and falls into one of the categories
of wrong poses. Each combination of angles for a particular
pose can be expressed as first-order logic formulas/assertions
along with using relational symbol operators for equality and
inequalities (=,>,<,≤,≥) are used to form atomic predicates.
The SAT core returned from the SMT solver indicates the
presence of a particular posture.

Each pose is categorized according to the value of joint
segment angles within the unfavorable range. Consider the
slouching posture, characterized by a person sitting with
rounded shoulders, a forward-leaning head, and a slightly bent
neck. Therefore, the slouching posture can be described as the
combination of angle 1 and angle 3, which indicate a slight
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forward bending of the head, along with angle 5, angle 6, and
angle 9, which represent the angles at which the shoulders
are bent and hanging. If any of the following combinations
of angles are outside the desired range of values - angle 1,
angle 3, or 5, 6, and 9 - the posture is classified as “slouching”
using SMT assertions. The following assertion, which is given
as input to Z3 [29], a popular SMT tool, demonstrates the
classification of slouching:
(set-logic QF LIA)
(declare-const angle 1 Int)
(declare-const angle 3 Int)
(declare-const angle 5 Int)
(declare-const angle 6 Int)
(declare-const angle 9 Int)
(assert
(and
(or (> angle 1 15) (> angle 3 90))
(or (≥ angle 9 90) (> angle 3 90)) (or (> angle 1 15 (≤ angle 5
value) (≥ angle 6 value) (≥ angle 9 value))) (or (> angle 3 90)
(≤ angle 5 value) (≥ angle 6 value) (≥ angle 9 value)))
(check-sat)
(get-model)
(exit)

Definition 1. Assertion in SMT to classify slouching posture

The assertion in Definition. 1 consists of five blocks. The
first line selects the underlying theory, QF LIA (linear integer
arithmetic). The following five lines are used to declare
variables or functions. Variables are declared using (declare-
const name type), where name is the variable name and type
is the variable type. Constraints/rules/assertions in SMT-LIB
are of the form (assert ...) describing the rules expressed in
the Conjunctive Normal Form (CNF). The command (check-
sat) solves the assertions defined using (assert ...). Depending
on the result, one can then use (get-model) to obtain a model
when the formula is satisfiable or (get-unsat-core) to extract
an unsatisfiable core (a subset of the rules) when the formula
is unsatisfiable. Finally, the command (exit) terminates the
solver.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, we evaluate our posture recognition frame-
work on both of our collected datasets discussed below. The
following metrics determine the effectiveness of our frame-
work: (a) the accuracy and (b) the average execution time of
posture recognition. The experiments were performed on a
computer with Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz,
32 GB RAM, and 1 TB SSD.

A. Data collection

To evaluate the performance of the proposed method, we
created a new RGB-D dataset using the Intel® RealSense™
D435i. In addition to RGB images and depth maps for each
observation, the dataset includes the 3D joint coordinates using
a second-generation wireless inertial-magnetic motion tracker
by Xsens.

(a) (b)

Fig. 5. (a) Experimental Setup, (b) Subject with Xsens motion capture sensors.

1) Posture Dataset: The data collection was meticulously
designed to replicate an authentic office work environment,
focusing on a worker engaged in computer-related tasks. The
participant was outfitted with the Xsens motion capture system
comprising 17 strategically placed sensors. These sensors
were located at key anatomical landmarks for comprehensive
postural analysis: the head, both right and left shoulders,
sternum, upper arms, forearms, hands, pelvic region, upper
legs, lower legs, and feet, as depicted in Fig. 5(b). We
organized a desk, chair, keyboard, and mouse to emulate a
typical workstation. The Intel® RealSense™ D435i camera
was positioned precisely on the same axis as the chair to
capture detailed images. This setup was maintained at 250 cm
from the subject, elevated to a height of 185 cm, and oriented
at an angle of -15 degrees relative to the ground, as shown in
Fig. 5 (a).

During the data acquisition phase, seated at the workstation,
the subject underwent five separate data collection sessions.
Each session spanned 120 seconds. The Intel® RealSense™
system captured 1100 RGB and depth frames throughout these
sessions. Concurrently, the Xsens system, functioning as a
reference, recorded data at a sampling rate of 60Hz, resulting
in a collection of 7200 samples per sensor. This dual-system
approach facilitated a comprehensive and comparative analysis
of the dataset. The dataset primarily comprises sitting postures,
mainly consisting of (1) Normal posture characterized by
sitting upright, with the back supported by the chair and
hands on either the lap or the desk. (2) The crouching posture
sits upright, with the neck bent downwards and the hands
resting on the lap or desk. (3) The hunchback position involves
sitting with a rounded back, a forward head close to the table,
and hands either on the lap or the table. (4) The slouching
posture is characterized by sitting with rounded shoulders and
a forward head tilt. (5) Swayback posture refers to sitting with
the hips in front of the body’s midline. Table I shows various
sitting postures and the ergonomics standards and guidelines
for computer workstation design, as outlined [30].

2) Taekwondo Dataset: The dataset was developed specif-
ically with data on movements performed by Taekwondo
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TABLE I
USA STANDARDS FOR SITTING POSTURE ANGLES

Sitting Posture USA standards
Forward head tilt Maximum of 15°
Upper arms and fore-
arms position

Elbow angles between 70° and 135°

Hands and wrists posi-
tion

Maximum wrist extension (bent up) of 10°
or flexion (bent down) of 30°

Vertical viewing angle 15–25° below the horizontal eye level
Shoulder angle 90°
Forward position Adjustable maximum of 330 mm from seat

reference point
Backrest angle (for
swayback posture)

Adjustable between 90° and 120° from the
horizontal

Upright Sitting angle 90°
Armrests height Adjustable between 170 and 270 mm above

seat

athletes. To achieve this task, we collect videos of students at
Darimar Martial Arts, Columbus, Ohio. The acquired dataset
comprises various Taekwondo patterns, each symbolizing a
distinct movement executed by an athlete for a specific belt.
The patterns comprise the following belt colors: white, yel-
low, orange, green, and black. Understanding patterns is a
crucial component of Taekwondo training, as explained in
the Taekwondo America student manual [31]. Patterns aid in
the development of proper concentration and technique. The
principal objective of this dataset is to gather data on the
movements in any given belt pattern executed by Taekwondo
athletes and to utilize this information for instructional and
training purposes for students. We have a collection of 35
videos in total, which feature either a single student or multiple
students performing the movements in sequence for each belt
pattern. The videos were captured primarily using the camera
on the phone. Fig. 6 (a) shows the walking stance low block,
and (b) shows the walking stance reverse punch of a student
in a dark green belt pattern.

Table. II shows the accurate order of 20 movement patterns
in the green belt, along with the validated angles and direction
of the arm movements, as confirmed by the master of Darimar
Martial Arts. When a student performs under the supervision
of an expert, any deviation of 10 to 15 degrees in the angle
of the positioning of body parts is considered.

B. Depth Transformation Results

As mentioned in Section. III-B, the depth maps obtained
from RGB-D cameras are processed per frame to minimize
the effect of noise. We have compared our methodology
with a cutting-edge Convolutional Neural Network (CNN) for
denoising depth maps called DECNN [21]. The authors have
proposed a lightweight Convolutional Neural Network (CNN)
specifically designed to eliminate noise and improve the qual-
ity of the depth map. The network comprises three layers that
perform high-dimensional projection, missing data comple-
tion, and image reconstruction. It takes grayscale and depth
images as inputs. The loss function utilizes an Euclidean-
based distance metric to highlight the impact of edges, which
quantifies the disparity between the network output and the

(a) (b)

Fig. 6. Green belt movement patterns (a) walking stance low block, (b)
walking stance reveres punch.

TABLE II
MOVEMENTS IN GREEN BELT PATTERN AND THE CORRECT ANGLES AND

DIRECTION OF MOVEMENTS

Movement Angle/Direction Movement/Kick
1 90d Left L Walking Stance
2 Forward R Front Kick ->R Front Stance
3 180d Right R Walking Stance
4 Forward L Front Kick ->L Front Stance
5 90d Left L Walking Stance
6 Forward R Walking Stance
7 90d Left R Back Stance
8 Hold Position Shift Foot Into L Front Stance
9 180d Right L Back Stance
10 Hold Position Shift Foot Into R Front Stance
11 90d Left L Walking Stance
12 Forward R Walking Stance
13 270d Left L Walking Stance
14 Forward R Front Kick ->R Front Stance
15 180d Right R Walking Stance
16 Forward L Front Kick ->L Front Stance
17 90d Left L Walking Stance
18 Forward R Walking Stance
19 Forward L Front Kick ->L Walking Stance
20 Forward R Front Kick ->R Walking Stance

corresponding ground truth. The drawback of this proposed
DECNN framework is the amount of preprocessing required
on the training data before feeding into the model. The pre-
processing procedure has six steps: intensity equalization,
bilateral filtering, edge extraction, watershed segmentation,
segment average padding, and intensity quantization. After
pre-processing, the unnecessary detail is weakened, and edges
are enhanced.

On the other hand, our depth transformation pre-processing
includes two steps: (1) An offline alignment by utilizing a bi-
linear interpolation technique that relies on the scale factor
between two images. It is necessary to perform this step
because the field of view of the RGB and depth cameras
differs in the Intel® RealSense™ D435i camera. The d435i
depth camera has a field of view of 87° × 58°, while the RGB
camera has a field of view of 69° × 42°, and (2) applying
a Fast Non-local means denoising. Fig. 7 (a) and (b) show
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(a) (b)

Fig. 7. Depth Transformation Results (a) DECNN, (b) Our depth transfor-
mation method.

the results of enhancing depth maps using DECNN and our
proposed method, respectively.

C. Posture Classification and Posture Transition Results

We evaluate the effectiveness of our proposed posture recog-
nition model by measuring its accuracy in determining the
correctness of a given posture and the accuracy in identifying
the correct sequence of pose transitions. The Xsens system
records 3D sensor data from 17 sensors placed on the subject’s
body, as depicted in Fig. 5(b). The sensor data is subsequently
labeled with one of the five sitting postures and used as
the reference for the experiments conducted on the Posture
Dataset. Our posture recognition framework processes each
input frame individually and calculates the 3D values of body
joint locations and the angles connecting any two body joint
key points using OpenPose. This 3D output is compared
to the ground truth data to assess the accuracy of posture
recognition. In addition, in the Taekwondo dataset, each video
frame is labeled a pose transition corresponding to a specific
belt pattern.

We have compared our posture recognition and pose tran-
sition framework against cutting-edge machine learning, time
series, and deep learning models. The input for these models
used in posture recognition consists of the 3D coordinates of
body joint locations and the corresponding angles, categorized
into one of the five sitting postures. However, the input to
these state-of-the-art models is frame-wise labeled pose tran-
sitions for identifying the right sequence of posture transitions.
Additionally, a decision function is used to determine if the
sequence of posture transitions corresponds to a specific belt
pattern.

1) Comparison with Machine Learning (ML) baseline mod-
els: We compare the performance of our proposed Posture De-
tection framework with existing Machine Learning models as
shown in Fig. 8(a) where the x-axis shows the ML models used
for comparison and the y-axis shows accuracy. We include
different classifiers for comparisons like Decision Tree (DT),
Support Vector Machine (SVM), Naı̈ve Bayes (NB), Random
Forest (RF), and Bagging Classifier (BC). The collected sensor
data are labeled into one of the five categories of posture recog-
nition. We observe that the ensemble learning-based models
are showing better results because they aggregate results of
individual weak classifiers based on different strategies, and
our satisfiability-based method outperforms the ML baseline
models.

2) Comparison with time-series baseline models: To show
the effectiveness of our proposed posture detection framework
on both the datasets, we compare them with several baselines
that work with multivariate time series classification using sk-
time library [32] as shown in Fig. 8(b). We train the following
time-series classifier models, Supervised Time Series Forest
Classifier (STSF), Time Series Forest Classifier (TSFC), Time
Series Support Vector Classifier (TSSVC), Random Interval
Spectral Ensemble (RISE), Ensemble of Bag of Symbolic
Fourier Approximation Symbols (BOSS). As shown in Fig 8
(b), our proposed posture detection framework achieves better
accuracy than the above-mentioned time-series models.

3) Comparison with state-of-the-art Deep Learning (DL)
baseline models: We compare our proposed model to three
other existing posture recognition and prediction models pro-
posed in [33]–[35], and the performance results are shown in
Fig 8(c). Authors in [33] developed a system that combined
two ultrasonic sensors and 16 pressure sensors. The collected
signals were fused and processed by an Arduino board and
then transmitted to a cloud platform, where a Convolutional
Neural Network (CNN) and Lower-Balanced Check Network
(LBCNet) were used for posture classification. The posture
classification framework developed in [34] is a combined deep
learning model consisting of a Fully Convolutional Network
(FCN) and a Long Short-Term model (LSTM). The data
was collected for nine different postures using three tri-axial
accelerometer sensors placed on the backs of the subjects
to monitor their posture during sitting and standing. In [35],
authors have proposed a Posture-CNN deep learning method in
the field of posture recognition. Posture-CNN can effectively
reduce network parameters and improve network speed. Six
distinct postures were monitored during data collection: walk-
ing, raising the left arm, the right arm, the arms, squatting,
and lifting the legs. Human skeleton data is monitored using
the Kinect V2.0 depth sensor’s skeleton tracking function.

The results in Fig. 8(a) and (c) show that DL-based ap-
proaches work better than traditional ML approaches because
they can handle sequential data and take into account how
data changes over time. In contrast, our proposed model, our
satisfiability-based approach, detects posture with the highest
accuracy compared to ML, DL, and time-series models.

4) Running Time Comparison: Fig. 9 compares the infer-
ence time of our framework for both datasets against state-of-
the-art DL-based posture-recognition methods considered in
section IV-C3. For our framework, the reported time includes
OpenPose based key point detection, estimation of joint an-
gles, and checking for satisfiability to classify the postures. For
DL models, it is inference time for classification. It is seen
that our inference time is the lowest. The time DL models
require to classify postures is proportional to the number of
layers and the model size. However, our proposed framework
uses DL (OpenPose model) solely for body joint keypoints
detection, thereby maintaining a decent inference time to
recognize the proper or improper posture. The average time
taken by our framework to recognize the proper or improper
postures for posture and taekwondo datasets is 610 and 590
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(a) (b) (c)
Fig. 8. Comparison of Accuracy of proposed Posture detection framework to (a) ML classifier models, (b) Time-series classifier models, and (c) State-of-
the-Art DL models.

Fig. 9. Average Running Time Comparison

ms, respectively.

V. CONCLUSIONS
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