
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x
1

PAPER Special Issue on Parallel/Distributed Computing and Networking

DCLUE: A Distributed Cluster Emulator∗

Krishna KANT†, Amit SAHOO††, and Nrupal JANI†, Nonmembers

SUMMARY Given the availability of high-speed Ethernet
and HW based protocol offload, clustered systems using a com-
modity network fabric (e.g., TCP/IP over Ethernet) are expected
to become more attractive for a range of e-business and data
center applications. In this paper, we describe a comprehensive
simulation tool to study the performance of clustered database
systems using such a fabric. The simulation tool currently sup-
ports both TCP and SCTP as the transport protocol and models
an Oracle 9i like clustered DBMS running a TPC-C like work-
load. The model can be used to study a wide variety of issues
regarding the performance of clustered DBMS systems includ-
ing the impact of enhancements to network layers (transport, IP,
MAC), QoS mechanisms or latency improvements, and cluster-
wide power control issues.
key words: Unified Ethernet Fabric, Clustered systems, perfor-
mance modeling, database emulation, distributed caching.

1. Introduction

In the e-business environment, mid-tier and backend
applications have traditionally been implemented on
SMPs (symmetric multiprocessors) because of their eas-
ier programming model and efficient inter-process com-
munication. However, SMP implementations have sev-
eral serious drawbacks including high cost and inabil-
ity to grow the system gradually as the need arises.
Thus, there is a definite trend towards cluster based
computing even for well entrenched SMP applications
such as large databases. This trend is further aided
by the emergence of high bandwidth, low-latency clus-
ter interconnect technologies such as Infiniband archi-
tecture (IBA) and HW offloaded TCP/IP over Eth-
ernet [2], [4]. On the software side, there are already
solutions available for running applications that do no
require a painstaking manual partitioning in order to
minimize inter-process communication (IPC). However,
there isn’t much information available in the open liter-
ature on the performance, scalability and stress behav-
ior of commercial clustering solutions. In this paper we
describe a database cluster simulation tool that we have
designed and provide some sample results. A detailed
study of performance scalability is contained in [3].

The primary focus of our study is a cluster Eth-
ernet as the “unified” clustering fabric. IP/Ethernet
is attractive as a high performance clustering fabric
for a variety of reasons: (a) commodity availability of

†Intel Corporation
††University of California, Davis
∗This work has been submitted to PODC 2005

Ethernet at 10 Gb/s or higher speeds, (b) optimized
HW implementation of TCP/IP that can reduce com-
munication latencies, (c) developments in storage over
IP area which makes Ethernet a cost effective alterna-
tive to Fiber channel, and (d) large entrenched base
of IP/Ethernet infrastructure. Furthermore, a single
“unified pipe” coming into a server is highly desirable
for high density “blade” servers where space and power
are at a premium. However, such an approach requires
that the unified fabric work almost as well as isolated
fabrics under stress conditions. The tool developed here
allows the study of such issues and development of nec-
essary QoS mechanisms for unified fabrics.

2. Clustered Database Architecture

Clustered DBMS implementations cover a wide range
in terms of the level of coupling of various nodes. On
one extreme, there is the “shared nothing” approach,
where each node has its own independent memory and
IO subsystem. In this case, the database must neces-
sarily be partitioned among the nodes. A more coupled
approach is “shared IO” approach, where all nodes ac-
cess a centralized IO subsystem which holds the data-
base. The IO subsystem in this case is invariably a
Fiber-channel based SAN. DCLUE supports both of
these models. In particular, the basic model assumes a
distributed iSCSI based storage available at each node.
One attraction of such a “distributed storage” model
is that it allows for an inexpensive IO system at each
node which expands naturally with the cluster size. A
centralized SAN based storage model is also supported;
however, the details of the SAN are currently not being
modeled.

In a clustered DBMS, each node stores the cur-
rently accessed data portions in what is known as the
‘buffer cache’, and this makes a data coherence scheme
essential. The are two major coherence schemes for
strict data consistency, both supported by DCLUE:

1. Read/write locking (RWL): This is the traditional
scheme where reading requires a shared lock but
writing requires an exclusive lock. Write lock also
requires invalidation of all existing copies. It is
clear that RWL can result in significant overhead
in terms of locking, invalidation and the associated
messaging.



2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

2. Multi-version concurrency control (MCC): This
scheme [1] creates a new version of the item on
each update. MCC avoids any “read-locks” since
a transaction can always find the appropriate ver-
sion of the data to read. Write/update accesses
still require locking, however, there is no need for
a traditional “invalidation”; instead, the concur-
rency control needs to ensure that only the most
recent version is written to. The price for MCC
must be paid in terms of managing multiple ver-
sions, additional memory requirements, fatter IPC
data messages, and more disk IO.

The basic value proposition of distributed caching
is that retrieving data out of the remote buffer cache
is significantly cheaper than reading it from the disk
(even in case of local disks). Thus, one would expect
small clusters to perform well even with the traditional
“SW TCP” solutions. With HW TCP implementa-
tions, good scaling should be possible even for rather
large clusters.

The distributed caching in DCLUE is based upon a
directory based scheme known as cache fusion [5] that
is used in Oracle 9i. Cache fusion works as follows:
Suppose that a node A experiences a miss on DB block
X in its local buffer cache. Node A then determines
(via a local table lookup) that some node, say B, holds
the directory information for this block. A requests
the block X from node B, which in turn directs the
appropriate data holder C to send the block to A. In
case the no node holds the data, A obtains block X
from the disk (local or remote). Note that it is possible
that A = B, or B = C; in these cases some operations
become local and the corresponding messaging is not
needed.

3. TPC-C like Database Workload

The TPC-C benchmark (http://www.tpc.org/tpcc)
is a natural choice for an online transaction process-
ing (OLTP) database workload because of its popular-
ity and availability of detailed characterization data.
TPC-C models operations of a wholesale parts supplier
operating out of a number of warehouses and their asso-
ciated sales districts. The workload has 5 transactions,
namely new-order, payment, order status, delivery and
stock level . The nominal fractions of these transactions
are 43%, 43%, 5%, 5% and 4% respectively. The per-
formance metric reported by TPC-C is the number of
“new-orders” processed per minute and is expressed as
tpm-C.

The benchmark involves 9 tables: warehouse, dis-
trict, customer, stock, item, new-order, order, order-
line and history. Of these, the first 5 tables are fixed,
but others are variable. The benchmark is designed
such that the database size increases linearly with the
throughput. The largest tables are typically customer

and stock and may require significant space for their
indices.

A notable characteristic of TPC-C transactions is
that they all refer to a single warehouse. This, coupled
with the fact that most tables have the number of ware-
houses as a multiplier, makes TPC-C database triv-
ially partitionable: assign equal blocks of warehouses
to each server and direct queries based on the ware-
house. For this reason, TPC-C is usually considered an
inappropriate workload for clustering studies. We ad-
dress this weakness by not necessarily directing queries
to the right server. Instead, we introduce the notion of
affinity. An affinity of α([0, 1]) means that the query
goes to the right server with probability α and to a
random server with probability 1− α.

4. Cluster simulation Model

The simulation model was developed using OPNET
(www.opnet.com). DCLUE was built on top of the
OPNET provided TPAL (transport adaptation layer)
which can support multiple transports underneath.

The model implements distributed caching, mul-
tiversion concurrency control, row/page locking, log-
ging, disk IO, database tables, table operations, buffer-
ing, IPC handling, application processing, schedul-
ing, thread switching, processor-memory data trans-
fers, etc., often in painstaking detail. As a result, it
requires a rather fine-grain model calibration. This is a
problem in spite of a wealth of available measurement
data on TPC-C, TCP processing, iSCSI processing, etc.
On the positive side however, the model isn’t dependent
on high level results that would be easily invalidated by a
change in system parameters. For example, the hit ratio
in the buffer cache is not an input parameter; instead,
it is a result of the actual buffer cache management
done by the simulation. Similarly, the number of locks
acquired per transaction, IPC messages sent/received
per transaction, log blocks written to the disk, blocks
read from the disk, data versions created per block,
context switches per transaction, etc. all fall out of the
actual functioning of the simulation rather than being
artificially provided as some inconsistent set of values.

In spite of the detail, DCLUE obviously could not
mimic a real system at a fine grain level; the purpose
of DCLUE is to merely implement the most impor-
tant functionality from a performance perspective and
thereby allow sensitivity studies. Some of the high-
level functionality missing from DCLUE are failure re-
covery and checkpointing since these are not essential
for our purposes. Nevertheless, given the model cali-
bration based on actual measurement data, the results
can provide valuable insights into the performance of
OLTP workloads on a cluster. The model also allows
a number of what if studies by changing a wide variety
of parameters which could be difficult to change in a
measurement setup.



KANT et al.: DCLUE: A DISTRIBUTED CLUSTER EMULATOR
3

Fig. 1 A sample DCLUE model w/ 2 latas & 4 nodes per lata

Fig. 2 Node model of DCLUE servers

Figure 1 shows the DCLUE network model. The
network is organized as one or more “subclusters”
which we call LATAs (borrowed from telecom). The
subclusters are connected via an “outer-router” (or an
“outer-switch” if we only want layer 2 switching), at
which the clients also home in. Each server has inter-
nal disk subsystems for normal IO and logging, but not
all of them may be used. In the distributed storage
configuration, the disks are accessed remotely via the
iSCSI protocol and locally via the SCSI protocol . In
the centralized (or SAN based) storage configuration,
the set of all IO subsystems forms a virtual SAN which
is accessed via some SAN fabric.

One of the objectives for the model is to study
potential ill effects of running IPC and storage traffic
on the normal Ethernet network that carries miscella-
neous other types of traffic. For this, the model allows
some extra clients and servers(“extra client” and “ex-
tra server” in Fig 1) to be added to the cluster. These
can run some additional applications and cause that
traffic to interfere with DBMS traffic on various links
and routers.

During initialization, each server establishes 2
TCP connections to every other server: one for IPC
messages (data & control) and the other for iSCSI re-
lated traffic (command, status, data, etc.). The reason
for separate connection is to allow QoS studies that
treat IPC and storage separately. By default, TCP
parameters are set appropriately for a data center en-
vironment rather than the WAN and can be changed
easily. The client-server TCP connections are estab-
lished dynamically on a per “business transaction” ba-
sis. A business transaction consists of the sequence of
TPC-C transactions starting with the new-order in the
proportions specified in section 3.

Fig 2 shows the internals of the node model for
regular servers. The modules with vertical bars show
those that implement queuing, whereas others only im-
plement the logic plus pure delays. The paths between
modules are “streams” used to deliver data or control.
Each module is described further via a state machine
(or a “process model”), but these are not shown. The
additions that we have made are the appl, disk and
logmgr modules; others are standard OPNET imple-
mentations. The node model is generic and thus shows
certain features that are not being used here (e.g., UDP,
RSVP, IP encapsulation, etc.). The node shows only a
single NIC and the corresponding transmit and receive
modules. Other nodes types (e.g., extra server, client
and extra client) have similar node models except for
the application level details.

5. Architecture of DCLUE

5.1 Database Representation

In order to allow for detailed table operations, DCLUE
builds the entire database in memory according to
TPC-C rules. However, it only maintains enough in-
formation about each table row in order to correctly
handle the essence of each query. It turns out that be-
yond the basic information (e.g., warehouse id, district
id, customer id, list of items ordered, item quantities,
etc.) just one or two parameters are adequate to cor-
rectly execute each query. Thus the database takes
much less space than the real one. The actual row sizes
are still used to compute such parameters as number
of rows per page, rows per subpage (for subpage level
locking), etc. In spite of these savings, storage require-
ments become excessive for large throughputs. We use
a consistent scaling mechanism to address this issue
(discussed later). In addition to the tables themselves,
DCLUE also maintains a B+ tree based index for each
table. Although indices are normally fully cached, they
are treated just like tables and may be only partially
cached.

Since the entire database is sitting in the memory,
buffer cache operations merely relate to status changes
and list operations – the simulator does not need to per-



4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

form any actual disk IO. The buffer cache is maintained
separately for each table (typical in TPC-C implemen-
tations) as governed by the specified “caching fraction”.
The same applies to indices. The page replacement pol-
icy is simple LRU with a few modifications.

To allow for fine-grain locking, a page (or disk
block) is divided up into a number of subpages. A sub-
page contains one or more complete rows, and the sub-
page size can be chosen independently for each table.
This was essential since certain tables (e.g., district &
new-order) have a much higher contention than oth-
ers and thus benefit from small subpage sizes. A small
subpage results in more overhead both in terms of simu-
lation (more memory space and slower processing) and
the simulated system (need to acquire more locks for
queries working on a sequence of rows).

5.2 Locking Mechanisms

The basic locking mechanism in DCLUE is fairly sim-
ple. First, every transaction type acquires locks in a
consistent order so as to prevent deadlocks. For TPC-
C, the first locks are always on warehouse and/or dis-
trict table. If locking is not possible, the transaction is
put on a wait list, to be woken up later by a transaction
that releases the contended lock. Note that the locks
already acquired are not released before going into a
wait state. For other tables, the inability to lock re-
sults in the release of all locks and a rollback of the
transaction to the point of first lock attempt. In this
case, the transaction waits for a exponentially distrib-
uted amount of time and then tries again. A transac-
tion retries a few times, and if it doesn’t succeed, it
aborts. In order to avoid holding locks unnecessarily,
the locking in DCLUE is actually a 2-phase process:
latching (or intention locking) followed by locking.

1. In phase 1, the transaction goes through the query
plan to determine what subpages it needs to oper-
ate on and which one of those need to be locked.
It posts requests for missing pages to the direc-
tory node . The lock requests are also transmitted
to the directory node, which acquires “latches” on
the requested subpages. The difference between a
latch and a lock is that latches are compatible with
one another, i.e., multiple transactions can hold a
latch on the same subpage. However, latch is not
compatible with a lock, and any attempt to latch
a locked subpage fails immediately.

2. The transaction enters phase 2 when all the re-
quested data has already been placed in its buffer
cache and all latches have been acquired. (The re-
quested pages are pinned in the buffer cache so that
they don’t get replaced.) The transaction then
makes a single request to the directory node to
convert all its latches into locks. If the conversion
is not possible, the transaction may wait or release

locks/latches and do a delayed retry as explained
above.

The above scheme is likely to be rudimentary com-
pared with the ones used in commercial DBMS, but it
appears to work fairly well even at low affinity values.
Sophisticated schemes (e.g., multi-level locking) may
yield better performance under heavy contention, but
should not change many of the sensitivity results.

5.3 Multiversion Concurrency Control

MCC implementation requires mechanisms to store
multiple time-stamped versions of each lockable item,
which in our case is a subpage. The memory required
for creating new versions is allocated in DCLUE from a
special version memory pool. The pool size is specified
independently for each table to ensure that small but
heavily used tables such as district can have many ver-
sions without their pool space being eaten up by mon-
ster tables like customer or stock. If the version mem-
ory pool for any table is exhausted, pages are stolen
from the corresponding buffer cache.† For large tables
like customer and stock, this will always happen since
we set the pool size to 0 for them.

As more and more versions are created for sub-
pages within a block, the effective size of the block
grows. If another node requests a block, all its ver-
sions are transferred, and the requestor has the job
of figuring out which version it really needs. Such a
scheme makes all versions available at the requesting
site in one shot, but may be wasteful of memory. Al-
though a new version of a subpage may be created as
soon as a transaction (that holds lock on it) attempts
to modify it, the new version will not be visible to other
transactions until the transaction commits successfully
and releases the lock. If the transaction rolls back, the
privately created new version will simply be discarded.
DCLUE separately maintains the “global time-stamp”
for each subpage, which is the highest timestamp across
all nodes. An update must always use this version. A
minimum time-stamp is also maintained at each node
so that unneeded versions can be discarded.

Each transaction itself carries a time-stamp, deter-
mined from the time the transaction successfully con-
verts all its latches into locks. Basically, the idea is
that to maintain serializability, the transaction must
use subpage versions that are current as of this time.
For a read-only transaction, the transaction time-stamp
is the time when it starts execution. Finally, when a
transaction with the smallest timestamp is retired, any
subpage versions with a lower or equal timestamp can
be discarded.

†If all pages in the buffer-cache are pinned and thus no
stealing is possible, the transaction aborts.



KANT et al.: DCLUE: A DISTRIBUTED CLUSTER EMULATOR
5

5.4 Disk IO and Logging

DCLUE emulates disk IO in significant detail in or-
der to capture some essential characteristics of disk
IO behavior. In particular, for each table, disk reads
and writes are queued separately according to the page
number and an elevator scheduling algorithm is used
for both, with switches between read and write cycles.
Since the queues may contain duplicate requests from
different nodes, all duplicate IO requests are retired im-
mediately after the IO finishes. The latency and path-
length consequences of disk IO are accounted for, and so
are such situations as references to a dirty block while
it is being written to disk. In this case, the disk write
is still allowed to complete, but the block is not evicted
from the buffer cache on disk write completion.

DCLUE implements the normal lazy disk write
model where the modified pages are written back to
disk only when they are evicted (and have the high-
est version number). Thus, a disk write might happen
long after the transaction is committed. In order to en-
sure database consistency in case of a failure, all data
modified by a transaction is written to a separate log
disk. A transaction must wait for log data to be safely
flushed to the disk before committing. Logging does
not go through the normal file-caching path of the OS
and thus is much less processor intensive. Log writes
are also much faster at the disk because of sequential
writes.

DCLUE allows for distributed logging where each
node does its own private logging. This avoids a cen-
tralized bottleneck but can make recovery much more
expensive. More centralized logging (i.e., per subnet or
per cluster) is also supported.

5.5 Application Processing

A DCLUE client implements a number of “client
threads”, each of which generates business transac-
tions at a specified rate. A business transaction, in
turn, consists of a sequence of sub-transactions (or sim-
ply transactions), each of which involves a request-
response interaction with the server. The server is
chosen according to affinity and other load distribu-
tion characteristics and remains the same for all sub-
transactions. Clients communicate with servers using
transaction packets.

A transaction packet arriving at a server is entered
in a data structure where it stays until finished (retired,
aborted, timed-out, or rejected outright due to lack of
resources). The inter-process communication is accom-
plished via packets of a different type called messages.
A message is smaller and shares some crucial fields (e.g.,
trans id) with the transaction packets. All packets in-
volve their own processing (TCP/IP processing plus
some application IPC layer processing) in addition to

triggering application processing.
Application processing proceeds according to the

query plan for each transaction type. The total over-
head of completing a transaction is the accumulation
of the overheads of individual steps such as disk IO,
buffer cache management, locking/unlocking, version-
ing, logging, TCP/IP processing, context switching, ta-
ble operations, data sorting, transaction commit, etc.
This requires a very detailed parameterization, and the
data for this was pulled from many sources. In par-
ticular, a lot of TPC-C processing data is taken and
scaled from the NASA report [6] and current TPC-
C measurements. The data related to cache, bus and
memory channel performance is taken from recent mea-
surements and well-reviewed TPC-C projections within
Intel. The data concerning network stack processing
overheads is taken from authors’ work and other on-
going work in Intel on acceleration of TPC, iSCSI and
other protocols [2], [4], [8], [9].

5.6 Thread Management

Each accepted transaction is assigned an application
thread which stays with it until done. This thread is
responsible for all application processing and may expe-
rience many context switches. In particular, the thread
blocks voluntarily for each receive and disk read. The
thread may also be switched out involuntarily to sched-
ule system threads for such tasks as TCP/IP process-
ing, disk IO handling, logging, locking/latching, and
unlocking. The simulation attempts to implement a
network IO scheme similar to real systems. In particu-
lar, a receive operation interrupts application process-
ing to schedule TCP/IP processing (if done in SW) and
for placing data in the user buffer. The typical situation
of application processing culminating in a message send
is handled by ensuring that the application execution
path-length is fully simulated before the send becomes
“eligible”.

Thread management and scheduling incurs some
cost, which is included as an input parameter. The
cost of a context switch is modeled as follows. There
are three costs associated with a context switch:

1. Basic cost: CPU cycles needed to save the state of
the running thread and restoring that of the new
thread. This part is typically quite small and is
denoted as Smin.

2. Working set accumulation stalls: CPU stalls (in
cycles) while the lost portion of the working set
is rebuilt (via memory-cache transfers of required
cache-lines).

3. Additional bus/memory traffic: The rebuilding of
the working set increases load on processor bus and
memory channels which results in additional mem-
ory access latencies and hence CPU stalls for other
memory accesses as well.



6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

In order to model these with some degree of real-
ism, we exploited detailed measurement data for Red-
hat Linux 7.3 OS [7]. The measurements list the con-
text switch cycles as a function of working set size and
number of competing threads. Based on these measure-
ments, we find that the following equation matches the
measurements quite remarkably. Let η denote the frac-
tion of processor cache occupied from average working
set size considerations. That is,

η = [NappSapp + NsysSsys]/cache size (1)

where Nx and Sx denote the number of active threads
of type x and their working set sizes. Then, assuming
a fairly homogenous system, the fraction of working
set lost between two successive schedulings of the same
thread, denoted L(η), can be approximated by the fol-
lowing equation:

L(η) =
{

Lmin+(1− Lmin)(1−2−2η+1) if η ≥ 0.5
4Lminη2 if η ≤ 0.5 (2)

where Lmin is the fraction of working set lost when
η = 0.5. Lmin was consistently found to be around
0.1. Now, the CPU stall (in CPU cycles) caused by the
switching in of thread type x is given by:

Sx = Smin + BxL(η) (3)

where Bx is the total cost of building the entire working
set for thread type x (expressed in CPU cycles). It
can be estimated from the working set size, average
burst size and memory pipeline delay (including post-
L2, address bus, data bus and memory channel delays).

¿From other TPC-C specific data, we know that
the average TPC-C working set size is around 32KB.
We did not have reliable information about system
threads and assumed a working set size of 4KB.

5.7 Bus and Memory Modeling

All processing overheads in DCLUE are specified in
terms of path-length (i.e., average number of instruc-
tions required to accomplish a task). In order to convert
these to CPU time (or cycles) we also need estimates of
cycles per instruction (CPI). The overall CPI depends
not only on the basic processor architecture but also
on CPU stalls caused by the memory subsystem. In
fact, the overall CPI can be expressed as the base CPI
(i.e., CPI under infinite L2 cache) plus a component
contributed by CPU stalls due to latencies in data re-
trieval from the memory. In particular,
CPItot =CPIbase+BF ×MPI ×mem acc latency (4)

where BF (blocking factor) is the fraction of memory
access latency that is visible to the CPU and MPI is
average misses per instruction. The BF value depends
on the platform, and the established TPC-C BF value
for the modeled platform (0.78) was used. The MPI de-
pends on the cache size and detailed caching behavior
of various components of the workload. The memory

access latency obviously depends on the queuing delays
in the address & data busses and in the memory chan-
nels. Other than direct IO, the traffic hitting the bus
and memory are misses out of the cache which means
that MPI and memory access latency are not indepen-
dent.

In order to estimate CPIbase, we modify the base-
line CPI obtained from unclustered TPC-C measure-
ments based on the increased working set resulting from
affinity less than 1. Basically, the idea is that as the
affinity decreases, the amount of data to be maintained
expands proportionately. Similarly, starting with the
MPI for an unclustered system, we do some modifica-
tions according to a power law of the form: a doubling
of working set increases MPI by X%, where X is a pa-
rameter. The parameter X is obtained from measure-
ments. Estimating memory access latency itself can be
quite involved as it includes 4 key components: (a) la-
tency of actually putting out the request on the address
bus, which we call post-l2 latency, (b) address bus la-
tency, (c) memory channel latency, and (d) data bus
latency. While address and data busses can be mod-
eled as simple queues with deterministic service times,
the memory channel is modeled as a queuing station
(with number of non-lock step channels as the number
of servers) in series with some pure delay. With this,
the queuing delays and hence the overall memory access
latencies can be computed analytically.

6. Cluster Performance Modeling Studies

DCLUE takes a large number of input parameters
which are specified via 3 different mechanisms: (a) in-
put file, (b) header file, and (c) direct parameter setting
via GUI. The basic business transactions are generated
according to the specified distributions. The generation
supports a 2-phase semi-Markov arrival process. In ad-
dition, it is possible to generate traffic with cyclic over-
load pattern. In this section we use the DCLUE model
to obtain a number of interesting results on scalabil-
ity and the effects of contention. As stated earlier, al-
though standard TPC-C specification is exploited heav-
ily in the implementation and model calibration, we are
interested in scenarios beyond basic TPC-C particu-
larly in terms of the role of IPC in clustered databases.
Running DCLUE produces detailed statistics for each
client and server node. The server statistics are also
aggregated on a per-lata basis. This feature is useful
if the traffic distribution across latas or nodes within a
lata is made uneven in order to study impact of focused
load imbalances. Both client and server statistics are
also averaged globally.

The base model calibration was done for Intel Pen-
tium IV class dual-processor (DP) servers for which un-
clustered TPC-C measurements and validated platform
performance models were readily available. In partic-
ular, the baseline server configuration is a 3.2GHz P4



KANT et al.: DCLUE: A DISTRIBUTED CLUSTER EMULATOR
7

DP system with 1 MB second level cache, 133 MHz bus
and 16GB of DDR-266 memory. One such node deliv-
ers about 50K (unclustered) tpm-C performance, which
amounts to a database with about 4K warehouses.

Unfortunately, even a small cluster of such nodes
will require very long simulation time and huge
amounts of memory. The need for > 4GB memory
which would require the complexity of reworking the
simulation to use PSE/AWE on 32-bit machines. To
avoid this problem, we consistently scaled all relevant
parameters by a factor of 100x. This includes CPU
frequency, processor bus, memory channels, PCI bus,
disks, links, routers etc. Furthermore, all CPU over-
heads are expressed as “path-lengths” (i.e., number of
instructions required to accomplish the operation) or
as path-length equivalents. As for the database itself,
a slow-down in all platform and OS parameters will
automatically reduce the throughput (and hence the
number of warehouses) by 100x. With the above scal-
ing, it is possible to simulate reasonable sized clusters.
The results can then be scaled back to get an estimate
of the performance of the original system.

Detailed results from DCLUE are discussed in [3]
and will not be discussed in full detail here. Instead, we
only include some sample scalability results in order to
provide some idea of the nature of results that DCLUE
can provide. In particular, Fig 3 shows cluster through-
put vs. cluster size and affinity as a parameter. The
affinity 1.0 case is shown just as a reference and corre-
sponds to the case of perfect scaling. As expected, the
scaling gets progressively poorer as the affinity rises.
However, the interesting part is an almost linear scal-
ing from 2 or 3 nodes to 10 nodes. For larger clusters,
locking related and topological issues start to come into
effect.

At high affinities, the reason for continued scaling
is the lack of any shared bottlenecks in the system. In
fact, most resources increase linearly with the cluster
size. For example, each new node adds not just CPUs,
but also memory, memory channels, processor bus, nor-
mal and logging disks, and router links. If the net-
work grows by adding more subnets, the stress on each
inner-router also remains unchanged. Even the lock
contention per page stays the same since TPC-C man-
dates that the database size increase linearly with the
throughput. For low affinities, the low realized through-
put prevents the bus from becoming a bottleneck for
moderate cluster sizes, despite a significant increase in
the MPI.

Fig 4 shows the impact of slower growth of DB
size as a function of throughput. For this we assumed
that for up to 90K tpm-C, the database sizing is ac-
cording to TPC-C rules. However, beyond this, the
growth rate of warehouses grows as square root of the
additional throughput, rather than linearly. With this,
the contention for the data increases as the cluster size
increases. Consequently, the throughput no longer goes

up linearly with the cluster size. Figures 5 and 6 show
two other situations of limited resources. In Fig 5, we
assume that the forwarding rate of the routers is re-
duced from the normal 10000 packets/sec to 4000 pack-
ets/sec. This causes the throughput to saturate beyond
8 connected servers. Fig 6 shows a scenario where one
node in the cluster is responsible for all logging oper-
ations. This centralized logging makes recovery much
easier than the logging-per-node assumed elsewhere.
However the price is paid in terms of poorer scalability
due to a centralized bottleneck.

Figures 7 and 8 show two other interesting results
from the model. Fig. 7 shows the average number of
versions created by the multiversion concurrency con-
trol mechanism as a function of affinity and the num-
ber of nodes. The version count is computed only over
the sub-pages that are actually touched – not over all
database subpages. The fact that lower affinity leads
to fewer versions is completely opposite to what we had
originally expected. The reason for smaller versions is
the much higher lock contention which keeps a lid on
the number of versions in existence. The decrease with
number of nodes also looks unexpected, and is related
to faster eviction of the page from the buffer cache.
Finally, Fig. 8 shows throughput as a function of num-
ber of configured threads. As expected, the throughput
rises with number of threads up to a point and then flat-
tens out. The more interesting result – not shown here
– is that with large number of threads, the achieved
throughput becomes quite sensitive to overload . It is
found that under overload, excess threads only result
in the processor cache to thrash and hence result in
poorer performance.

These cases plus a number of others reported in [3]
show the value of DCLUE in studying clustered DBMS
performance under a variety of scenarios relating to
available resources, traffic distributions, implementa-
tion alternatives (e.g., HW vs. SW TCP), QoS config-
urations, communication latencies, sizing parameters,
etc. Because of very detailed model calibration, it is
also possible to move significantly away from standard
TPC-C characteristics. In particular, it is possible to
study how the latency sensitivity of the workload varies
as computation to communication ratio is varied, or
the fraction of light-weight vs. heavy weight queries
is varied. It should, however, be kept in mind that as
the characteristics move significantly away from stan-
dard TPC-C the fidelity of the model could deterio-
rate in terms of issues like computation of MPI and
bus/memory traffic.

7. Conclusions

In this paper, we have described a comprehensive model
of clustered database systems. The model allows a
wide variety of studies with clustered DBMS systems
and thus provides a valuable vehicle for understanding



8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 3 Scaling vs. nodes and affinity Fig. 4 Impact of slower growth in DB size

Fig. 5 Impact of router forwarding rate on scalability Fig. 6 Impact of single node logging on scalability

Fig. 7 No of subpage versions vs. affinity Fig. 8 Throughput vs. no of threads

their performance. The model is particularly valuable
in examining the impact of fabric characteristics on the
application latency. In particular, application level im-
pact of any new developments at MAC, IP and trans-
port layer can be readily examined using DCLUE. For
example, the ongoing IEEE work on MAC level conges-
tion control schemes can be examined using DCLUE.
Other uses include study of cluster wide power control
studies, study of advantages of transport layer multi-
casting with traditional RW locking, study of utility
computing paradigm (e.g., virtual clusters), etc.

References

[1] P.A. Bernstein, and N. Goodman, “Multiversion concur-
rency control — theory and algorithms”, ACM Trans. on
Database Systems, vol. 8, no. 4, pp.465-483, Dec. 1983.

[2] G. Regnier et al., ”TCP onloading for data center servers”,
Special issue of IEEE Computer on Internet data centers,
Nov 2004 (Eds. K. Kant & P. Mohapatra).

[3] K. Kant, and A. Sahoo, “Clustered DBMS Scal-

ability under Unified Ethernet Fabric”, available at
kkant.ccwebhost.com/DCLUE.

[4] K. Kant, “TCP offload performance for front-end servers”,
Proc. GLOBECOM, San Francisco, CA, Dec. 2003.

[5] T. Lahiri et al., “Cache Fusion: Extending shared disk
clusters with shared caches”, Proc. 27th VLDB conference,
Rome, Italy, 2001.

[6] S. Leutenegger, and D. Dias, “A modeling study of the
TPC-C benchmark”, ACM SIGMOD Record archive, vol.
22, no. 2, pp.22-31, June 1993.

[7] P. Deng, “Telecom Linux performance evaluation”, Intel
measurement and evaluation report, Aug. 2002.

[8] A. Joglekar, “iSCSI Technology Investigation”, Intel mea-
surement and evaluation report, Nov. 2004.

[9] S.R. King and F.L. Berry, ”Software RDMA over TCP/IP
on a general purpose CPU”, submitted for publication.


