
Synthetic Data Generation for Storage Trace Augmentation

LU PANG and KRISHNA KANT, Temple University, USA

Due to the increasingly data-intensive nature of the applications, the storage system performance continues to
increase in importance and is often substantially responsible for the overall processing rate of the application.
Fortunately, the storage technologies themselves are evolving rapidly in numerous ways from low-level
read/write of bits from a device, all the way to the management of the entire storage hierarchy in large
enterprise and cloud settings. Studying many of the important issues in this entire spectrum often requires
storage access traces from the storage server side, but these are often hard to come by. To address this gap, we
present a method to generate synthetic traces using a novel generative adversarial network (GAN) architecture
that captures the realism and diversity of real storage traces. The generated traces can be used to augment the
existing workload traces of interest for a variety of storage system studies. We demonstrate how the proposed
method can generate storage traces that have the overall characteristics of the real traces and yet provide the
behavioral diversity.

CCS Concepts: • Information systems→ Storage management; • Computing methodologies→Neural
networks.

Additional Key Words and Phrases: Storage Traces, Generative Models, Synthetic Data, Data Augmentation,
Time series

ACM Reference Format:
Lu Pang and Krishna Kant. 2024. Synthetic Data Generation for Storage Trace Augmentation. ACM Trans.
Storage 1, 1 (April 2024), 26 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
The increasingly data-intensive nature of data-centered applications coupled with the complexity1

of modern storage systems [3], requires that many storage system deployments, be designed and2

tuned to be as performant as possible. Storage systems not only have numerous knobs [28] to be3

tuned but also many dynamic data management policies that need to work consistently to deliver4

the lowest latency and highest data volume. In addition to being performant, the storage system5

also needs to avoid any data corruption or inconsistency. Such aspects are typically evaluated using6

storage traces obtained from the real storage systems. We note upfront that by storage trace we7

really mean the metadata trace (i.e., generating the block numbers that are read or written). We are8

not concerned with generating the block content per se. Some use cases such as deduplication do9

require block contents, but we do not consider those.10

Collecting such traces usually has a substantial performance impact on the storage systems11

since the desired metadata must be extracted on each access, stored in a buffer, and occasionally12

flushed to the disk. Such overhead, coupled with privacy concerns regarding access patterns, has13

resulted in only a small number of traces being made available publicly, and most of those tend14

This research was supported by NSF grant CNS-2011252 and an Intel grant.
Authors’ address: Lu Pang, lpang@temple.edu; Krishna Kant, kkant@temple.edu, Temple University, 1925 N. 12th Street,
Philadelphia, Pennsylvania, USA, 19122.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 1553-3077/2024/4-ART
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


2 Lu Pang and Krishna Kant

to be of inadequate length. In contrast, many studies require quite long traces. Depending on the15

study objectives, the trace requirements may span from hours to weeks. For example, tiering is an16

essential feature for large scale storage systems, typically involving a slow but large hard disk drive17

(HDD) tier containing all the data, and a smaller/faster SSD tier for “hot” data. There may even18

be a third tier using emerging nonvolatile memory technologies for “very hot” data. Studying the19

performance of a tiering system adequately requires traces going over a week or more to properly20

represent daily workload patterns. Similarly, backup/restore performance requires long traces.21

There are many tools that generate artificial storage traces [1, 2, 8]. Many of these are concerned22

with host systems’ view of storage, typically in the form of access to files. Other trace generators23

focus on the storage system side and are concerned with accesses to blocks on a storage “Volume”,24

which is the primary concern of this paper. As discussed in the related work section. Most tools25

generate traces geared toward specific applications. Our goal instead is to develop a general trace26

generator; one that doesn’t need modeling of the specific application. It needs to be able to generate27

synthetic traces that can act as a drop-in replacement for the real trace, i.e., the generated trace28

should have similar overall properties as the real trace. Yet, to be useful, it cannot be an exact or even29

approximate copy of the real trace. Instead, we should be able to generate traces on demand, where30

the specific characteristics of the real trace (e.g., regions of heavy or light traffic, read/write mixture31

patterns, activity in specific portions of the address space, etc.) appear based on the underlying patterns32

rather than simply duplicating what exists in the real trace. In short, we want the trace generation to33

be able to demonstrate diversity without deviating significantly from the overall characteristics of the34

real trace.35

To achieve these objectives, we explore artificial trace generation using Generative Adversarial36

Networks (GAN) [24]. GANs are well-explored in generating realistic images and short videos [6,37

48, 54, 63] but their use in generating realistic storage traces poses several challenges that we38

discuss later in the paper. Thus the key contribution of this paper is the design of a specialized39

GAN that can accurately generate spatio-temporal features corresponding to the storage trace.40

Our model is able to deal with the large range and sparse nature of storage traces. Our design41

includes a mechanism to capture the distribution of the access frequencies in an attempt to seize42

the long-tail access frequencies found in real storage traces. A well-trained GAN model ideally will43

not memorize and duplicate the training data, and instead, it generates a varied set of episodes that44

is similar to the patterns found in the real traces.45

The requirement of “diverse yet similar” trace generation makes the evaluation of the generated46

trace rather challenging. In particular, using a fine-grained evaluation based on matching between47

the real and generated traces over small time windows would not capture the diversity of the trace48

(e.g., moving averages, autocorrelation, etc.) and is thus not useful. At the same time, gross statistical49

measures on trace characteristics such as access frequencies and sizes, although important, are50

inadequate and thus we consider other measures as well. In this paper, we analyze the generated51

traces in comparison to real traces; including point statistics and the distribution of the access52

frequencies. Furthermore, we evaluated the generated traces using several measures to compare53

various aspects of the trace.54

One such measure concerns the “heat prediction” developed in our earlier work [45]. The notion55

of “heat” is used in storage systems to determine what part of the data is actively read or modified56

by the applications. The synthetic traces will be used to train the model and will be evaluated57

against real traces.58

We also use a model of storage trace similarity that we developed in [46]. It takes into account59

several aspects unique to storage traces including similarity across spatio-temporal decompositions.60

It compares crucial spatio-temporal features which are important for storage applications.61

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



Synthetic Data Generation for Storage Trace Augmentation 3

Additionally, we run the real and generated trace through a comprehensive SSD simulator with62

a write cache. We use this to compare the behavior of both traces. We examine the latency of the63

requests. We also compare the cache hit rate of both the real and generated traces. Most applications64

and hence the stored data do show a definitive locality of access in that much of the stored data is65

referenced only rarely while a small fraction of it is referenced heavily. This aspect has implications66

for many important operations such as tiering (i.e., movement of hotter data to faster layers of the67

storage hierarchy), caching of data (by the device, storage server, or the host), data prefetching, etc.68

The rest of the paper is organized as follows. Section 2 introduces the related background work.69

Section 3 describes the challenges, data preparation, and essential details of our method. Section 470

analyses and evaluates the generated storage trace results. Finally, section 6 concludes the paper.71

2 BACKGROUND72

2.1 Emerging Storage Systems73

Flexible and efficient storage systems form the backbone for working with big data and deriving74

intelligence from it. Storage systems continue to evolve rapidly along multiple aspects: underlying75

storage technologies, storage access protocols, storage management, and higher level abstractions76

such as file systems and how they map to the storage. In particular, while the traditional hard disk77

drive (HDD) technology continues to evolve rapidly to increase storage density [38, 40], it has also78

been largely augmented with the solid-state drives (SSDs) for primary storage (i.e., data that is79

actively used). The underlying NAND “flash” technology of SSD itself continues to evolve and80

provides a wide range of tradeoffs in terms of storage density, performance, cost, and endurance81

depending on the number of bits per basic “cell” of the technology. There are numerous other high82

performance emerging technologies that are beginning to fill the traditional large gap between83

storage and memory. Some examples of these technologies are Kioxia XL-flash, Intel Optane,84

Everspins’s MRAM, etc. [17, 30, 31] These technologies naturally form a hierarchy, with HDD as85

the bottom layer (large capacity, slow, and cheap), SSD the middle layer (substantial capacity, fast,86

but more expensive), and emerging technology as the top layer (small, very fast and expensive).87

Often, the same basic technology may form multiple layers, such as slow vs. fast HDDs or SSDs.88

The entire hierarchy typically resides in a storage server which typically includes local DRAM cache89

and complex “volume management” to allocate requested space across one or more devices easily.90

The basic unit of storage I/O is typically a “block” of size 4KB, addressed using a sequential91

number called LBA (Logical Block Address), and much of the I/O performance is usually quoted92

in terms of IOPS (Input/Output Operations Per Second), meaning block transfers/sec. A typical93

HDD can provide ≈ 25𝐾 IOPS for sequential transfers and as low as 1/100th as much for random94

transfers, while the latencies can be as high as ≈ 5ms (depending on the seek and rotational latency95

components). HDDs achieve higher bandwidth by striping data across many drives. As a result,96

HDD “farms” in data centers provide a large amount of storage capacity and overall throughput97

but still slow transfers. SSDs, in contrast, provide a latency in ∼ 100𝜇s range and throughput of98

hundreds of K-IOPS to 1M or more IOPS). Higher speed technologies can support latencies under99

10 𝜇s and may support higher throughputs too. However, high speed technologies generally have a100

much higher cost, and thus much smaller installed amounts.101

Modern enterprise storage systems can hold a large amount of data, ranging from tens of terabytes102

to hundreds of petabytes. Thus while the users may still access storage in 4KB blocks, using such103

a small size for storage management and transfer operations is extremely inefficient. Thus the104

storage operations often use a much bigger unit, usually known as a chunk. Chunk sizes may range105

from hundreds of KBs to multiple MB sizes. We will also use the notion of chunks in this paper,106

typically defined as 8MB.107

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



4 Lu Pang and Krishna Kant

Since the storage servers are removed from the hosts that use them, the view of the storage from108

the storage server side is radically different from the one of a host. A host only sees the storage109

allocated to it, usually in terms of the file system residing on it, and has no idea where the storage110

comes from or whether it is spread over multiple storage devices. In contrast, a storage server111

works with the storage volumes, each of which could be carved out of one or more physical devices.112

Although a storage volume could be used by multiple applications, generally, the major enterprise113

applications use separate volumes. In this paper, we are only concerned with the storage server114

side view of things, and storage traces obtained thus is a block trace, i.e., a list of accesses to the115

blocks, stamped by the time, starting LBA, operation (read/write), transfer size, etc. We also note116

that this paper does not specifically focus on object based storage systems, although we expect that117

the data access patterns should be similar to block accesses.118

2.2 Data Augmentation119

Data augmentation is a method to increase the amount and variety of data in a dataset, which120

has been a popular approach in machine learning and particularly in computer vision [9, 35, 56].121

The new samples used to increase dataset size are generated from the existing data via a set of122

transformations, the appropriate transformations being application dependent. For example, in the123

case of images, it is easy to generate additional data by random cropping, translation, flipping, and124

adding some degree of noise. For time-series data, the suitable transformations are multiplicative125

scaling of signal amplitude (therebymaking peaksmore or less pronounced), stretching/compressing126

the time axis (to decrease/increase traffic density), scaling of mean and variance, and adding some127

random perturbation to it. This could be done in each dimension for a multi-dimensional time128

series.129

Such operations create more diverse versions of the original data. If these variants are properly130

labeled, such data can be highly valuable in training machine learning models since it would131

force the model to learn more complex features and thereby avoid overfitting. However, creating132

additional data this way for driving a real system can be questionable; in particular, while highly133

diverse traffic episodes are good for stress testing, they are inappropriate for normal performance134

evaluation. At the same time, a highly constrained transformation may not introduce adequate135

diversity. In the GAN context, the two uses of transformation coincide – training the GAN on136

transformed data can improve the training but such training will also affect the generated traffic.137

2.3 Generative Models138

Generative models are statistical models that learn the data distribution and use it to generate139

samples of this distribution. This is in contrast with discriminative models, which are used to make140

a prediction based on the given samples.141

Generator Synthetic 
Data

Real Data
Discriminator

Latent Z

Real or fake?

Fig. 1. Training Progresses of GAN

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



Synthetic Data Generation for Storage Trace Augmentation 5

There are several methods that fall under the class of generative models. Variational Autoencoders142

(VAEs) are one such model. VAEs are autoencoders that consist of an encoder and a decoder. The143

encoder learns a distribution, commonly Gaussian, that can be used to generate a latent vector.144

The latent vector is a low-dimensional random vector that is used as a source of randomness for145

the generation process. The decoder learns a Gaussian distribution representing the distribution146

of data of the sample from the latent vector. During training, VAE learns the parameters for the147

probability distribution used. These probability distributions are used to generate a random sample148

that acts as a latent vector. The decoder is trained to take a latent vector, which is sampled from149

these distributions, and generates an output. One could interpolate the output of the encoder to150

generate data that contains features of the input. However, the requirement of Gaussian distribution151

assumes smoothness that is usually not present in storage traffic traces.152

Diffusion models have emerged as a new class of generative models. Diffusion models start by153

gradually adding noise to the original data samples in a series of steps. They then learn to reverse154

the process, thus learning the model parameters needed to generate samples from noise. That155

is, given a sample 𝑥 , at step 𝑡 − 1, the model will use a process to add noise to the sample at the156

next step, according to some noise distribution 𝑞. The task then becomes learning a distribution157

𝑝 that takes the sample with added noise 𝑥𝑡 and can be sampled to generate 𝑥𝑡−1. To generate158

samples, the model will learn the joint distribution of the reverse process 𝑝 (𝑥0:𝑇 ). Thus, the diffusion159

models learn to generate samples from noise. However, these models tend to be rather slow and160

computationally expensive.161

Generative adversarial networks (GANs) generate data via a transformation of a latent random162

vector into a data sample. The transformation is learned via the co-training of the generator neural163

network and a discriminator network. These two networks play a game where the discriminator164

optimizes for discrimination between the generated synthetic data (or “fake” data) and the real165

training data. Note that the generator and discriminator networks can be viewed as function166

approximators that are learned based on the given input-output value pairs [51]. Figure 1 shows the167

general architecture of GANs. Given a Generative network𝐺 , Discriminator network𝐷 , distribution168

of original dataset 𝑝𝑑𝑎𝑡𝑎 , distribution of the randomnoise vector 𝑝𝑧 , this can bewrittenmore formally169

as a min-max equation of value function 𝑉 (𝐷,𝐺) [23, 24].170

min
𝐺

max
𝐷
𝑉 (𝐷,𝐺) = 𝐸𝑥∼𝑝𝑑𝑎𝑡𝑎 (𝑥 ) [log𝐷 (𝑥)] + 𝐸𝑧∼𝑝𝑧 (𝑧 ) [log (1 − 𝐷 (𝐺 (𝑧)))]

The first term encourages the discriminator to learn to maximize the value of real data 𝑥 , where171

𝑥 is sampled from the original dataset. The second term encourages the discriminator to provide a172

low value for the data generated by the generator. Also, in the second term, the generator learns173

to produce data from a latent vector 𝑧 that is sampled from the distribution of random noise. The174

generate learns by reducing the value that the discriminator outputs for generated data.175

Ideally, the generator and discriminator come to an equilibrium where both the discriminator176

and the generator cannot do better. One danger of such a generative model is that the generator177

may get stuck into generating a random or specific pattern. This occurs when the generator starts178

producing one or a limited amount of samples that fools the discriminator, therefore, the generator179

has no force to improve the diversity of the samples. This is commonly known as mode collapse.180

There are many techniques [5, 55] to improve the stability of training GANs.181

3 DATA GENERATION METHOD182

3.1 Challenges in Storage Trace Generation Model183

Using GANs to generate storage traffic is quite challenging as we need to capture complex correla-184

tions in time and space (block address). Other than avoiding mode collapse, we need to choose a185

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



6 Lu Pang and Krishna Kant

GAN architecture such that the model can be trained well without requiring an enormous amount186

of data or computing resources for training and execution. There is also the issue of diversity in187

the generated traffic as discussed earlier. GANs when trained allow us to draw samples from a188

distribution. The problem is that when the dimension size of the samples is large, GANs become189

difficult to train and require a substantial amount of compute/memory resources. In storage sys-190

tems, the space dimension can easily range from millions to billions of chunks. Similarly, temporal191

variations in the traffic may cover many time scales, from milliseconds to weeks. It is not easy to192

generate realistic storage traffic while keeping both the data requirements for training the GAN193

and the training resources reasonable. This was essential not only for the feasibility of our current194

work but also to keep the mechanism practical in view of ever expanding scale and size of storage195

systems in the data centers. Towards this end, we have tried many different GAN architectures from196

the burgeoning GAN literature and their extensions. These include TGAN [53] and DCGAN [48],197

though the two that we explored in detail are BigGAN [12] and Progressive Growing of GANs198

(PGGAN) [33]. We dismissed the former as the basis of our model because it requires high resources199

(in terms of computational power and dataset size) to train. PGGAN progressively builds larger size200

traces till they reach the desired sample dimension size. Such an approach is more scalable, requires201

fewer resources to train, and can be more stable than attempting to generate traces directly at the202

original dimension. Thus, we develop our trace generation model based on PGGAN.203

3.2 Data Preparation204

We use several publicly available traces of enterprise storage servers. These generally provide 1-2205

weeks’ worth of block I/O traces, often taken from storage volumes dedicated to certain applications.206

(See section 4.1 for details). We preprocess the raw trace before we use it for our synthetic data207

generation model. The traces are data series of I/O accesses that contain the timestamp, offset,208

request size, operation (read/write), and often other information that we do not use. We then209

separate the trace into seven one-day long traces. We accumulate the data access frequencies in210

terms of fairly large size access units called Chunks over a time interval that we call timeslot 𝑡 .211

In our experiments, each timeslot represents 150 seconds. This accumulation is done separately212

for read accesses and write accesses. We then represent the traces as data grids (successive time213

windows along the x-axis, chunk addresses along the y-axis, and the value being the number of214

accesses). Figure 2 shows an example of read and write accesses of the MSR dataset discussed later.215

The color represents the number of accesses, with a darker shade representing more accesses.216

We then cut the read and write data grids into multiple data sample grids using the sliding217

window technique. Each data sample consists of𝑚 time slots. We concatenate the read and write218

data samples together on a new axis. The shape of each data sample is 2 × 𝑛 ×𝑚, where 2 is the219

axis that concatenates both read and write data samples and 𝑛 is the total number of chunks on220

the server. The value of each element in the data samples varies a lot because of the large range of221

chunk addresses. Also, most of the values in the data samples are zero, since most chunks do not222

get accessed within𝑚 windows. This is typical of storage access; in fact, as the storage capacities223

and data set sizes increase, the actively used fraction is likely to go down. Therefore, we use a224

logarithmic scale to map the access frequencies to [0, 255]. We then normalize the data grids to225

[0, 1]. Mapping the initial frequencies through this process will reduce the training time of GANs226

and improve training stability. One reason for this is that the convergence rate will not be sensitive227

to the initial parameters of the model. Another reason is that large access values will not dominate228

the training and will allow the training process to update all the parameters on approximately the229

same scale.230

We also generate downsampled versions of the data samples before starting the training so that231

the downsampling is done only once. The Pillow library [16] is used to perform the downsampling232

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



Synthetic Data Generation for Storage Trace Augmentation 7

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k

Read----usr

(a)

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k

Write----usr

(b)

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k

Read----TC2

(c)

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k
Write----TC2

(d)

Fig. 2. Heatmap of read and write accesses of MSR (usr) workload and Tencent CBS (TC2) workload. For
clarity, the first 128 chunks and timeslots are shown. The chunk size used is 8MB, and the timeslot size used
is 150 seconds.

using bilinear interpolation. The downsampling results in fewer total number of chunks and233

timeslots, but the chunks and timeslots are larger. The usage of the downsampled data is described234

in the next section and its use in the generation process is shown in Figure 3. We denote the different235

sizes as 𝑛0 ×𝑚0, 2𝑛0 × 2𝑚0, . . . , 2𝑘−1𝑛0 × 2𝑘−1𝑚0, and 𝑛 ×𝑚, where 𝑛 = 2𝑘𝑛0 and𝑚 = 2𝑘𝑚0. Here236

𝑛0 ×𝑚0 is the initial size of the data sample to start the training of our synthetic data generation237

model. Note that since 𝑛0 is only 2−𝑘 times 𝑛, the chunk size at the lowest level is 2𝑘 times the238

chunk/timeslot size used in our original 𝑛 ×𝑚 representation.239

3.3 Model and Training240

Our model is a modification of PGGAN to scale the traces in progressive steps. That is, we start241

with a GAN that learns to generate a downsampled trace at the lowest level of 𝑛0 ×𝑚0. Once that242

training phase is done, it adds an extra layer to the model which is trained to generate a larger243

trace. It repeats this process until it reaches the desired trace sample dimension size. The idea is244

to improve the stability of the training process and the quality of the generated data. The model245

builds on what it learned during the training of previous layers and learns to generate upscaled246

traces. After the model is trained, the model generates the synthetic samples using the final version247

of the networks which uses all the layers. The progressive training of PGGAN is shown in Figure 3.248

Each new generator layer of PGGAN (shown as a green rectangle) connects to the previous249

layer and upscales the samples coming from that layer. Figure 4 illustrates the transition from data250

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



8 Lu Pang and Krishna Kant

…

G

D

Add

Training Progresses

Real

Latent
Latent

Latent
Latent

Real

Real
Real

Latent

Real

Add

Fig. 3. As training progresses, new generator and discriminator layers are added. The new generator layer
learns to generate upscaled data samples from the previous layer and the new discriminator layer is trained
on the upscaled samples.

n0 x m0

Conv 1x1

Conv 1x1

n0 x m0

n0 x m0

Conv 1x1

Conv 1x1

n0 x m0

n0 x m0

Conv 1x1

Conv 1x1

n0 x m0

Upsampling

2n0x 2m0

Downsampling

2n0x 2m0

Conv 1x1

Conv 1x1

Downsampling

Downsampling

Upsampling

2n0x 2m0

2n0x 2m0

G

D

⍺1-⍺

⍺1-⍺

Fig. 4. Fading in the added new layers to G And D smoothly. When a new layer is added, the results of the
previous layer are used (𝛼 = 0), by upsampling its output, until the new layer starts getting trained. While the
network is being trained, 𝛼 is changed gradually. Once the new layer is trained, its output is used directly
(𝛼 = 1). "Conv" refers to Convolution layers.

samples with a dimension size of 𝑛0 ×𝑚0 to data samples with a size of 2𝑛0 × 2𝑚0. It slowly adjusts251

a parameter 𝛼 to linearly mix the upscaled output of the previous layer and the output of the new252

layer. That is, the output of the upscaled previous layer is weighted by (1 − 𝛼), whereas the output253

of the new layer is weighted by 𝛼 . Initially, 𝛼 is set to 0 so that the generated data in training comes254

from the upscaled sample and as training continues, it puts more emphasis on the new layer by255

increasing 𝛼 linearly from 0 to 1. In this way, PGGAN makes use of the trained low layers to help256

optimize the parameters of the new layers.257

Representation of a storage trace can be visualized as an image, as already shown in Figures 2(a)258

and 2(b). However, the considerations in generating images are very different than for generating259

realistic traces. In particular, with images, the key considerations are aesthetics and accurate260

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



Synthetic Data Generation for Storage Trace Augmentation 9

Z
Synthetic 

data

Resized 
real data

Real 
or 
Fake？

Z

Synthetic 
data

Resized 
real data

Dh

Dh

Real 
or 
Fake？

s0

s0 s1

Latent

Latent

…
Conv (kernel = 3 x 3) + ReLU

Normalize

Fully connected

Conv (kernel = 1 x 1) + ReLU

Upsample

PixelNorm

Fig. 5. Architecture of the synthetic storage trace generation model. Each progressive step adds common
network blocks composed of the same set of layers as found in 𝑆1. "Conv" refers to Convolution layers.

rendering of objects. With storage traces, we are interested in statistical characteristics such as261

achieving a similar distribution of accesses in addition to capturing prominent patterns such as262

frequent chunk accesses. What they both share is the ability to ensure diversity in the generated263

data. Since our model operates on storage traces, it works on sparse data. That is, at any point in264

time, most of the chunks do not receive any access. In order to better capture the features of the265

sparse data, we add another discriminator to guide the model to generate traces whose distribution266

is close to that of the real data.267

Thus, our model consists of one generator network and two discriminator networks. One of the268

discriminators, denoted 𝐷 , focuses on capturing the element-wise features. The other discriminator,269

𝐷ℎ𝑖𝑠𝑡 , uses a histogram to capture the distribution features of the element values. A data sample 𝑥270

is input to 𝐷 and 𝐷ℎ𝑖𝑠𝑡 , which output 𝐷 (𝑥) and 𝐷ℎ𝑖𝑠𝑡 (𝑥) representing the probability of whether271

the input data is real or synthetic. The input of the generator network is a random vector 𝑧 drawn272

from a uniform distribution. The initial output of 𝐺 is the generated data of size 𝑛0 ×𝑚0. We input273

both the down-sampled version of real data samples of size 𝑛0 ×𝑚0 and generated synthetic data of274

size 𝑛0 ×𝑚0 to train the discriminators to first differentiate between the real and generated data of275

dimension size 𝑛0 ×𝑚0. Then we add layers progressively to𝐺 and 𝐷 to generate data of dimension276

size 𝑛 ×𝑚. We do not add layers to 𝐷ℎ𝑖𝑠𝑡 since we build the histogram with a constant number277

of bins that cover the range of [0, 1]. Instead, we reinitialize the weights of 𝐷ℎ𝑖𝑠𝑡 . As training278

progresses, we keep on adding layers to 𝐺 and 𝐷 as well as reset the weights of 𝐷ℎ𝑖𝑠𝑡 . When we279

finish the training of the previous and move to the next dimension size. This process is repeated280

until we generate samples of size 𝑛 ×𝑚.281

The architecture of our synthetic data generation model is shown in Figure 5. The architecture282

should be chosen carefully to take advantage of the structure found in the data for faster training283

and avoiding overfitting. We make use of Convolutional Neural Networks (CNN) [36]. CNNs use a284

sequence of convolutional layers, each of which convolves grid-like data with a kernel to learn its285

parameters. For example, each 3x3 kernel over the data would only require 9 parameters plus 1286

parameter for a common bias. This is much more efficient than a fully connected (FC) layer for this287

type of data, where there will be a parameter between each element of the grid and each output of288

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



10 Lu Pang and Krishna Kant

the layer. Taking advantage of the structure in the data allows the model to learn more quickly,289

with less data, less number of parameters, and requires less memory to hold the parameters.290

Our network grows as each layer is trained. The initial generator𝐺 consists of one FC layer, one291

two-dimensional (2-D) convolution layer with 3 × 3 kernel, and one 2-D convolution layer with292

1 × 1 kernel. We first train the generator 𝐺 to generate data of dimension size 𝑛1 ×𝑚1 using initial293

input 𝑧. Then we add the replicated 3-layer blocks one by one to the𝐺 network, thus increasing the294

dimension size of the generated data incrementally. The 3-layer block is made of one upsample layer295

and two 2-D convolution layers with 3 × 3 kernel. The components of discriminator network 𝐷 are296

mirrored layers of 𝐺 . We use average pooling in 𝐷 to downsample the data size. Average pooling297

does this by taking the average value of a window over the input, allowing us to reduce the size of298

dimensions of the of the input. The discriminator 𝐷ℎ𝑖𝑠𝑡 consists of one histogram construction unit,299

ten 1-D convolution layers, and one FC layer. The choice of convolution layers is based on their300

ability to find local correlation features in the data. By adding additional convolution layers, we301

increase the ability to capture longer range correlations. We use the FC layer to map the learned302

features.303

In all three networks,𝐺 , 𝐷 , and 𝐷ℎ𝑖𝑠𝑡 , every layer except the last uses the Leaky ReLU activation304

function [39]. These activation functions are needed in neural networks to introduce non-linearities305

into the network so it can learn non-linear mappings. ReLU outputs zero for inputs less or equal to306

zero and a linear function of the input for inputs bigger than zero. Leaky ReLU has a shallow slope307

for negative functions. Leaky ReLUs allow us to avoid dead neurons, where their output becomes308

zero and more training will not activate them.309

The last layers of 𝐺 and 𝐷 use a FC layer. For 𝐺 , it is to generate the data, and for 𝐷 , the layer310

has one neuron which is used to label whether the data it received is generated or original. The last311

layer of 𝐷ℎ𝑖𝑠𝑡 uses a tanh activation function [32].312

We initialize the bias parameters to zero and set all the weights to follow a normal distribution.313

We then scale the weights with the per-layer normalization constant to ensure the equalized314

learning rate [33]. We also perform element-wise normalization in 𝐺 and 𝐷 [33]. Each element315

represents the access frequency of a certain chunk during a certain time slot. We use Xavier316

uniform initialization [42] to initialize the weights in 𝐷ℎ𝑖𝑠𝑡 network in order to achieve convergence317

considerably faster. We also normalize the output of the histogram construction unit to stabilize318

the training.319

The average pooling layer of size 2 × 2 is used in discriminator 𝐷 to bring down the feature320

dimension size to half of the previous layer. We use the nearest neighbor upsample to double the321

feature dimension size in𝐺 . The convolution layers have 16 channels. As part of training, optimizers322

are used to adjust the parameters of the model, so as to reduce the loss. We optimize the synthetic323

data generation model using the Adam optimizer [34] which is often a first choice for training.324

We set the adaptive learning rate to 0.001. We use a batch size of 4 to train the data generation325

model. Our training starts with the sample of dimension size 4 × 32 and generates the final samples326

of size 256 × 2048, where 256 represents the number of timeslots in one trace sample and 2048327

represents the number of chunks in one trace sample. We use a timeslot size of 150 seconds in our328

training. These parameters may need tuning for workloads that are significantly different from the329

workloads that we have used in our work. Our model has been trained with a dual-GPU machine330

with 11GB of GPU memory on the card and 64GB of main memory.331

3.4 Loss Functions332

The loss function provides the objective we wish to optimize. It is used in the training of the network333

by giving a value of how large our errors are. The larger the error the larger the parameter shift in334

the network during training. In the case of our model, the loss is composed of components. The335

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



Synthetic Data Generation for Storage Trace Augmentation 11

first part is the normal loss for GAN models which represents competition between the generator336

and the discriminator. The second part promotes the stability of training. The third part directs the337

network to train towards a certain behavior and induces capturing the features we deem appropriate338

for the storage trace generation task.339

Binary cross-entropy loss: The goal of the discriminator is to distinguish between a real trace and340

a synthetic trace from the generator. The discriminator is trained to output a high probability for341

real data and a low probability for generated data. Then the binary cross-entropy is a measure of342

the discrepancy between the real and generated data. This value is used to train the discriminator343

so that it has a high probability for real traces and low probability values for synthetic data. The344

weights in the generator are updated so that it encourages the discriminator to give high values for345

synthetic data.346

Wasserstein GAN with Gradient Penalty (WGAN-GP): WGAN [6] was developed to encourage347

stability of training a GAN and thus avoid mode collapse. It uses the Wasserstein distance, also348

known as the earth mover distance, as a measure between the generated probability distribution349

and the real probability distribution. WGAN-GP [25] was then developed to add a gradient penalty350

term to the loss function in order to enforce the Lipschitz constraint [10] on the discriminator. This351

ensures that the gradient is bounded by some constant. This prevents ever-increasing changes in352

the parameters and thus makes the training well behaved.353

Differential histogram: In addition to the previous losses, we have added a differential his-354

togram [62] that is fed into its own discriminator so as to capture the distribution of the accesses in355

the trace. The distribution in the traces is not Gaussian since the accesses are sparse and workloads356

in storage systems may have a multi-modal distribution.357

4 EVALUATION AND DISCUSSION358

In this section, we evaluated our synthetic storage trace generation method with various evaluation359

metrics. We used several publicly available block trace datasets in this evaluation and demonstrated360

that we can capture the essential characteristics of the trace in each case.361

4.1 Publicly Available Traces and Characteristics362

Our experiments were conducted with several block storage datasets coming from two sources. The363

first source is the Microsoft Research Cambridge (MSR) [43] dataset which contains one-week long364

block I/O trace of several different enterprise server workloads (using different storage volumes).365

We used the traces of the User home directories (usr), Hardware monitoring (hm), and Project366

directories (proj). Each trace also has the metadata of the associated disk from which the traces are367

collected from. We selected traces that are associated with one of the disks for our experiments.368

The second data source is the Tencent production Cloud Block Storage (CBS) system [68]. The369

traces were collected from a production CBS system using a proxy server over 10 days. The proxy370

server is in charge of forwarding the I/O requests it receives from the client to the storage server.371

These traces were collected from a large number of cloud virtual volumes (virtual disks). The372

traces showed high variation in both the volume and access patterns over certain time periods.373

We evaluated several dozen of these traces and selected traces that represent the diversity of the374

dataset in the requested blocks and in the locality of requests. We randomly selected two of such375

traces and called these two workloads TC1 and TC2. We used the weekday traces of the first week376

in our evaluation.377

4.2 Evaluation378

Figures 6-8 show the heatmap of synthetic traces and real traces for the MSR and Tencent CBS379

workloads. For clarity, only the first 128 chunks are shown. For the rest of the paper, the figures380

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



12 Lu Pang and Krishna Kant

Legend for Fig. 6, 7, 8
cold warm hot

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k

Real----usr

(a)

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k

Real----proj

(b)

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k

Real----wdev

(c)

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k

Synthetic----usr

(d)

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k

Synthetic----proj

(e)

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k

Synthetic----wdev

(f)
Fig. 6. Heatmap of real (left) and synthetic (right) write accesses of usr, proj, and wdev MSR workload. For
clarity, the first 128 chunks and timeslots are shown. The chunk size used is 8MB, and the timeslot size used
is 150 seconds.

will show the write accesses since most of the workloads are write-heavy. The generated traces381

show a similar behavior to the real traces but are not simply an approximate copy of them. To382

show this more clearly, the right panels in Figure 7 show the blown up view of the square regions383

marked up in the left panels. It is again seen that the right top and bottom panels are similar but384

not identical. It is also crucial to note that by design, the trace generator will pick random samples385

from the learned distribution, rather than trying to match the exact pattern to the real trace. Thus,386

any given activity pattern (e.g., heavy accesses to some blocks) should not be expected to appear at a387

similar spot in the generated trace as the real trace.388

We started with a comparison of the statistics of the generated data compared to the real data.389

We used sixteen real trace samples and sixteen generated trace samples in our evaluation. The trace390

samples were randomly selected from the real and generated traces. The statistics were calculated391

for each of the sixteen trace samples. For each trace sample, we calculated the mean and standard392

deviation (S.D.) of the number of accesses over the chunks and the time range. These values differ393

across samples since different samples may include different patterns. Since there are many patterns394

and periods of high and low intensity in one trace sample, it is useful to ensure that these patterns395

are not skewing the overall number of accesses. Thus, we compared the maximum and minimum396

values of these samples. As we can see from Table 1 for both MSR trace and Tencent CBS trace, the397

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



Synthetic Data Generation for Storage Trace Augmentation 13

Fig. 7. Detailed heatmap of real (left) and synthetic (right) write accesses of hm MSR workload. For clarity,
the first 128 chunks and timeslots are shown in the top two figures. The detailed heatmap of the rectangular
section is shown in the bottom two figures. The chunk size used is 8MB, and the timeslot size used is 150
seconds.

Table 1. Mean and Standard Deviation (Real)

Statistics Workload
usr proj hm wdev TC1 TC2

Mean

Max (Real) 1.44 2.06 3.48 1.21 7.13 3.36
Max (Synthetic) 1.39 2.01 3.40 1.21 7.46 3.59

Min (Real) 1.14 1.07 2.46 1.14 5.85 1.81
Min (Synthetic) 1.07 1.05 2.58 1.09 6.30 1.82

S.D. Max (Real) 12.21 16.25 17.59 10.27 26.94 17.12
Max (Synthetic) 11.61 16.00 16.62 10.04 26.10 17.43

Min (Real) 10.91 10.36 14.27 9.93 22.94 12.86
Min (Synthetic) 10.38 10.11 14.32 9.53 23.44 12.75

max/min mean and the S.D. values of the generated trace samples are very close to the max/min398

mean and the S.D. values of the real traces. The reason that the mean is a low value is that the399

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



14 Lu Pang and Krishna Kant

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k
Real----TC1

(a)

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k

Synthetic----TC1

(b)

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k

Real----TC2

(c)

0 20 40 60 80 100120
Timeslot

0
20
40
60
80

100
120

Ch
un

k
Synthetic----TC2

(d)
Fig. 8. Heatmap of real (left) and synthetic (right) write accesses of Tencent CBS workload. For clarity, the
first 128 chunks and timeslots are shown. The chunk size used is 8MB, and the timeslot size used is 150
seconds.

accesses in the trace across time and chunks are very sparse. Generating overlapping means is in400

fact non-trivial because the tail distributions of the accesses are long.401

For the reason stated previously, synthetic storage traces should also capture the distribution of402

the workload being targeted. That is, the patterns found in the synthetic trace should be similar403

to the patterns in the real trace. Figure 9 shows the histogram of the accesses for the MSR write404

workload and Figure 10 shows the histogram of the accesses for the Tencent CBS write workload.405

The closeness of the distribution shape between the real and synthetic traces validates the inclusion406

of the differential histogram loss as a way to capture the distribution of accesses.407

Figure 11 shows the empirical cumulative distribution function for the access frequency of each408

chunk for all six workloads. The closeness of the real and synthetic empirical cumulative distribution409

function value also shows that our discriminator 𝐷ℎ𝑖𝑠𝑡 and the corresponding differential histogram410

loss is able to influence the model to generate samples that have similar distributions of access411

frequencies as the real samples. The smoothness of the synthetic cdf compared to the real cdf,412

is a result of the network attempting to learn the overall distribution via backpropagation. The413

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



Synthetic Data Generation for Storage Trace Augmentation 15

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 9. Histogram of real (left) and synthetic (right) write accesses of Friday for MSR workload. The X axis
represents the logarithmically scaled access frequency the chunks get. The Y axis represents the count of
how many chunks get accessed at a certain frequency. For clarity, the Y axis is shown up to 25000 due to the
long tail nature of storage requests. The range is divided into 8 equal buckets.

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



16 Lu Pang and Krishna Kant

(a) (b)

(c) (d)
Fig. 10. Histogram of real (left) and synthetic (right) write accesses of Friday for Tencent CBS workload. The
X axis represents the logarithmically scaled access frequency the chunks get. The Y axis represents the count
of how many chunks get accessed at a certain frequency. For clarity, the Y axis is shown up to 60000 for TC1
and 25000 for TC2 due to the long tail nature of storage requests. The range is divided into 8 equal buckets.

generated access frequency can be a fractional number. In contrast, the real trace has a built-414

in discretization, possibly due to the OS accessing multiple blocks even when only one block is415

requested. For example, Linux often reads 4 or 8 blocks (16 or 32KB) when a single block is requested.416

It is certainly possible to alter the generated trace to conform to such discretization, which would417

make it look much closer to the real trace. However, we have not done so, since we wanted to focus418

upon the ability of the GAN rather than post-processing of the generated trace.419

To evaluate the spatio-temporal behavior of the generated workload compared to the real420

workload, we used a storage traffic-specific similarity metric that we have introduced in our prior421

work [46]. We call this metric as Similarity Index for Storage Traffic (SIST). It generates three422

measures (main similarity 𝑆𝑀 , activity difference 𝑆𝐴, and finer detail differences 𝑆𝐷 ). We used423

only the main similarity measure 𝑆𝑀 , which factors in the spatio-temporal features of the two424

traces that we want to compare. This measure first decomposes the two traces using Discrete425

Wavelet Transform, and then computes the Dynamic Time Warping (DTW) distance for each426

spatial location in the two traces. Afterward, the overall Dynamic Time Warping distance across427

the spatial dimension is scaled with the total number of accesses in the trace.428

In the following, we used the function 𝑓𝑆𝐼𝑆𝑇 (𝑥,𝑦) to represent the SIST measure between traces429

𝑥 and 𝑦. For example, the similarity between usr and hm workload samples will be indicated by430

𝑓𝑆𝐼𝑆𝑇 (𝑥𝑢𝑠𝑟 , 𝑦ℎ𝑚). The function 𝑓𝑆𝐼𝑆𝑇 (𝑥,𝑦) ranges from 0 to 1.0 with 1.0 meaning that the traces431

𝑥 and 𝑦 have identical spatio-temporal properties. We expect samples from the same workload,432

for example, 𝑓𝑆𝐼𝑆𝑇 (𝑥𝑢𝑠𝑟 , 𝑦𝑢𝑠𝑟 ), to have higher values than when compared to other workloads. We433

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



Synthetic Data Generation for Storage Trace Augmentation 17

0 50 100 150 200 250
Scaled Frequencies

0.0

0.2

0.4

0.6

0.8

1.0
CDF----usr

Real
Synthetic

(a)

0 50 100 150 200 250
Scaled Frequencies

0.0

0.2

0.4

0.6

0.8

1.0
CDF----proj

Real
Synthetic

(b)

0 50 100 150 200 250
Scaled Frequencies

0.0

0.2

0.4

0.6

0.8

1.0
CDF----hm

Real
Synthetic

(c)

0 50 100 150 200 250
Scaled Frequencies

0.0

0.2

0.4

0.6

0.8

1.0
CDF----wdev

Real
Synthetic

(d)

0 50 100 150 200 250
Scaled Frequencies

0.0

0.2

0.4

0.6

0.8

1.0
CDF----TC1

Real
Synthetic

(e)

0 50 100 150 200
Scaled Frequencies

0.0

0.2

0.4

0.6

0.8

1.0
CDF----TC2

Real
Synthetic

(f)
Fig. 11. Empirical cumulative distribution function for the access frequency of each chunk for all six workloads.
The synthetic/real pairs are random samples from each workload. The x axis represents the logarithmically
scaled access frequency the chunks get.

normalized the SIST values shown in Figure 12 using the SIST value of two randomly selected434

samples from the targeted workload which is noted in the title of each subfigure.435

Figure 12 shows six bar charts, one for each workload as indicated. Each chart shows the SIST436

comparison results against the real traces for a target workload. For a specific target workload,437

the corresponding subfigure shows: the comparison results between the generated samples (as438

indicated in the chart label) and the original samples of the targeted workload, the original trace439

samples of the targeted workload against themselves, and the original traces of other workloads440

against the original traces of the target workload. For example, in Figure 12(a), we show the SIST441

measure between the generated and the real usr traces (marked as usr’). This is compared to the442

SIST results between each of the workloads and usr. It is seen that the SIST measure of usr’ is443

closest to that of usr. The same behavior holds in Figures 12(b)-(f). For example, in Figure 12(f)444

TC2’ is closest to TC2 as compared to others.445

To further evaluate the behavior of the generated workload compared to the real data, we446

evaluated the synthetic trace on a prediction model. The model is a simplified version of a heat447

prediction model that we developed for storage traces [45]. The aspect of the model that we use in448

our evaluation is the heat prediction of the next time step based on the current activity. The heat449

prediction model predicts how many accesses each of the chunks gets for the next time step.450

Fig. 13 shows the architecture of our heat prediction model. We used the Random Forest (RF)451

[11] composed of a collection of many Decision Tree (DT) [47] regression models. We used this452

collection of DT models to train over the input data and average the results of each model to453

produce the final heat prediction. We ran the prediction model with the mixed training dataset454

in that one out of five weekday data are randomly selected and replaced by the generated data.455

The heat prediction model used provides a prediction range of how many times a chunk will be456

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



18 Lu Pang and Krishna Kant

usr′ usr proj hmwdevTC1 TC20.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 

SIST----usr

(a) SIST comparisons against real usr

proj ′ proj usr hmwdevTC1 TC20.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 

SIST----proj

(b) SIST comparisons against real proj

hm′ hm usr projwdevTC1 TC20.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 

SIST----hm

(c) SIST comparisons against real usr

wdev′wdev usr proj hm TC1 TC20.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 

SIST----wdev

(d) SIST comparisons against real wdev

TC1′ TC1 usr proj hmwdevTC20.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 

SIST----TC1

(e) SIST comparisons against real TC1

TC2′ TC2 usr proj hmwdevTC10.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge
 

SIST----TC2

(f) SIST comparisons against real TC2

Fig. 12. Bar chart of normalized SIST forMSR and Tencent CBS workloads. Each graph considers one workload
(e.g., "usr" in the first graph) as the baseline. The SIST values of all the shown workloads are relative to
the baseline. The workload name without prime is the real traffic whereas the one with prime (e.g., usr’) is
synthetic.

Input Heat Data

Prediction PredictionPrediction Prediction

Average

Final Heat Prediction

…
Tree 1 Tree 2 Tree m

Fig. 13. Architecture of the heat prediction model.

accessed during the next time slot. If a chunk is accessed more than the inactive threshold, the457

chunks will be predicted as active. The active hit rate measures the ratio of the actual prediction458

results that fall within the prediction range. As we can see from Table 2, for most workloads, we459

achieved similar results for real and generated traces. As for the performance of "hm" workload,460

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



Synthetic Data Generation for Storage Trace Augmentation 19

Synthetic Real
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

La
te

nc
y

MQSim----usr

(a)

Synthetic Real
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

La
te

nc
y

MQSim----proj

(b)

Synthetic Real
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

La
te

nc
y

MQSim----hm

(c)

Synthetic Real
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

La
te

nc
y

MQSim----wdev

(d)

Synthetic Real
0.0
0.5
1.0
1.5
2.0
2.5

La
te

nc
y

MQSim----TC1

(e)

Synthetic Real
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

La
te

nc
y

MQSim----TC2

(f)
Fig. 14. Boxplot showing latency (ms) of a random synthetic and real trace run through MQSim. The whiskers
cover the 99th percentile. The dashed line in red represents P90. The boxplot shows that the P90, and for
most workloads, the P99 of the synthetic/real pairs within workloads are much closer than across workloads.

we can see that the synthetic and real traces of "hm" are closer to each other than the values of461

other MSR datasets (both synthetic and real).462

Table 2. Active Hit Rate
Fraction of the prediction results that fall within the prediction range

Workload
usr proj hm wdev TC1 TC2

Real 0.77 0.72 0.56 0.73 0.66 0.71
Synthetic 0.77 0.73 0.62 0.73 0.67 0.70

Table 3. MQSim Cache Hit Rate

Workload
usr proj hm wdev TC1 TC2

Real 0.43 0.53 0.47 0.81 0.43 0.81
Synthetic 0.46 0.41 0.47 0.84 0.46 0.80

Another tool we used to show that the generated data from our method resembles real traces463

is an SSD simulator called MQSim [59]. We converted the synthetic output into a trace that can464

be used by MQSim. We randomized (uniform distribution) the specific LBA and time-of-request465

for each request in a chunk during a timeslot. MQSim was set up as an SSD of size 512GB with a466

write cache of 22GB and an overprovisioning ratio of 0.1. We ran the trace through MQSim and467

evaluated the trace using two measures. The first measure compares the distribution of the latency.468

In Figure 14, we present boxplots from random synthetic and real samples for each workload. We469

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



20 Lu Pang and Krishna Kant

can see that the median of synthetic/real latencies is low (due to caching) but the P90 for the same470

workload tends to have a similar spread and different spread between different workloads. For most471

of the workloads, P99 between the real and synthetic trace of the same workload also tends to be472

more similar. We also evaluated the write cache hit ratio shown in Table 3. The results show that473

for all six workloads, the cache hit ratio between synthetic and real is very close to each other.474

5 RELATEDWORK475

5.1 Statistic property based generation476

Many storage trace generators are currently in existence but can be classified into three broad477

classes. First, we have the simple ones which are usually driven by specified distributions for the478

size of stored files and access sizes, along with specifications of the extent to which the accesses479

are sequential, random, or mixed. FIO [8] and IOZONE [1] are two popular examples of such tools480

and they are largely used for benchmarking purposes [61]. Such generators are very limited in481

the traffic characteristics that they can emulate. Commonly applied statistical assumptions are482

sometimes not able to generate the trace accurately [20]. Atikoglu et. al. [7] use statistical modeling483

to model the generation of request properties, such as key size, value size, and inter-arrival rate484

for caching workloads. They showed their generated samples are similar to the original trace in485

terms of these statistical properties. In some works, it was shown that self-similarity [22] is a better486

model for synthetic trace generation. They used the performance measures that are provided by487

the disk simulator called DiskSim [21] to evaluate the distance between the synthetic workload488

and the real workload.489

The second class includes the ability to generate ensembles of traces with different characteristics490

to emulate various workloads. They normally start with the real traces and then modify the real491

traces based on statistics. SPECstorage Solution 2020 [2] (and its earlier version called SPECSFS) fall492

into this category. Trace replay tools, such as hfplayer [26], are also included in this class. Hfplayer493

can take real traces, modify them in some way based on heuristics for inferring I/O dependencies or494

device characteristics, and replay them. They used several properties to evaluate whether the replay495

maintains the characteristics of the original trace workload such as the response-time and execution496

time. They also evaluate Type-P-Reordered metric which measures the number of requests that are497

reordered.498

The third category attempts to generate realistic workloads using statistical models for specific499

applications or use cases. For example, Tarasov et. al. [58] proposed a method to generate realistic500

deduplication datasets by emulating duplication characteristics of the data that they analyzed.501

They used several statistical properties to measure their generated datasets, such as total files, total502

chunks, numbers of unique chunks and those that had one and two duplicates, directory depth,503

file size, and file type distributions. Other examples include generating specific benchmarks, such504

as TPC-H [67]. They used the response time provided by DiskSim to measure the accuracy of the505

synthetic workload. Ganapathi et. al. use statistical models to predict metrics for queries [19] and506

resource requirements for cloud applications [18]. The prediction model could then be used to507

generate workloads. To build this model, quality features need to be identified. They defined a508

predictive risk metric, which is similar to the R-squared metric, to compare the accuracy of their509

predictions. Wang et. al. [65] developed a simple model, called PQRS, to recursively decompose a510

trace into four regions and at each level capture the probability of access in each of those using511

an information theoretic approach. They evaluated their model through the comparison of the512

performance behavior (response time and queue length distributions) between the generated and513

the real trace. JEDI [52] is a trace generation tool for caching simulation that uses a custom traffic514

model called Popularity-Size Footprint Descriptor (pFD). The pFD captures properties that the515

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



Synthetic Data Generation for Storage Trace Augmentation 21

authors have deemed relevant for caching simulations. It is not clear how well it applies to other516

workloads. The quality of the generated trace is measured through object-level properties (i.e.517

object size, popularity, and request size) and cache-level properties (i.e. request and byte hit rates).518

For the object-level properties, they compared the distribution of these properties over the real and519

synthetic traces. For the cache-level properties, the hit rates are compared under various caching520

algorithms. Tarasov et. al. [57] also look at the problem of extracting essential characteristics of521

traces focusing, in this work, on block traces. They note, that in many cases, exact traces are not522

needed. Rather, it suffices to generate synthetic traces that capture the salient characteristics of523

the trace. The authors take a statistical approach, using multi-dimensional matrices to capture524

statistics; for example, a matrix can be designed to capture inter-arrival, read/write modes, and525

the I/O size. To deal with a shift in the statistical nature of the workload the authors developed a526

method called chunking; which captures the statistics over a shorter time period where they are527

stable. The method they developed can make a tradeoff between the size of the capture and the528

precision of the results. To characterize the accuracy, they measured the relative error between529

the synthetic and real traces on a set of trace statistics (e.g. read/sec, write/sec, request size, queue530

length, power consumption).531

In this paper, we evaluate the quality of the generated trace through the two main approaches we532

find in the related works, namely statistical properties (e.g. access frequency) and the performance533

of applications (e.g. cache hit rate). In addition to these two approaches, we also evaluate the534

similarity of spatio-temporal patterns between the synthetic and real traces.535

5.2 Data Driven based generation536

When dealing with a large amount of data, capturing an accurate signature of a trace is useful to537

characterize a trace. Liu et.al. [37] developed IOSI, which is a three-phase approach to extract the I/O538

signature from noisy, zero-overhead server-side I/O throughput logs collected on supercomputers539

and job histories. They defined the I/O signature of an application as the I/O throughput generated540

by that application at the server-side storage of a given parallel platform during the application541

execution. The purpose of IOSI is to estimate the bandwidth needed for the user application.542

They first eliminated outliers during the Data Proprocessing Phase. Then they picked out the543

individual I/O bursts by wavelet decomposition during the Per-Sample Wavelet Transform. Finally,544

they identified common I/O bursts from multiple instances of an application’s execution using545

CLIQUE which is a grid based clustering algorithm. They evaluated the quality of the I/O signature546

produced by IOSI and compared it to Dynamic Time Wrapping by cross-correlation and correlation547

coefficients.548

Generative models have been used to generate network traffic [15, 50] but unlike storage trace,549

a network packet trace only has the temporal component (i.e., inter-packet times). They have550

also been used to generate continuous time-series data such as TimeGAN [66]. Medical signal551

generation such as EEG-GAN [27] for generating EEG signals has also been explored. However,552

medical signals have special features, such as periodicity with some inter-peak variations, and553

generally only small variations in the magnitude of peaks and valleys. Such characteristics should554

be represented accurately in the trace to make the signals realistic for a person. Storage traffic, in555

contrast, can have much more randomness and sudden shifts in the traffic.556

Synthetic generation and augmentation using generative models have been explored extensively557

in the literature but mostly in the context of image generation. The works range from methods that558

allow the choice of classes for the outputs to augmentation by transforming the current dataset.559

However, the emphasis of the synthetic data generation and data augmentation works shown below560

differs from the goal that our work tries to accomplish.561

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



22 Lu Pang and Krishna Kant

Data Augmentation Generative Adversarial Networks (DAGAN) [4] is a model designed to562

generate class-specific data. It does this by learning the class parameters as part of its generator.563

This allows it to use few-shot learning and generate unique data from the distribution. DAGAN564

infers the class information from the example input and is able to generate output similar to the565

class.566

Trabucco et. al. [60] studies diffusion models [29] to generate synthetic data to augment real567

data for downstream tasks. Their aim is to ensure the diversity of the generated data. For example,568

they note the issue of generating different species of animals. They propose an image-to-image569

transformation parameterized by pre-trained text-to-image diffusion models.570

T-CGAN [49] uses the Conditional GAN (CGAN) [41] model to generate irregularly sampled571

time series data for data augmentation. CGAN introduces a way to condition the generator and572

discriminator by feeding the extra information, such as class labels or other domain knowledge,573

to both the discriminator and generator. CGAN is trained in this way so that data for specific574

classes can be generated on demand. T-CGAN generates time series, that are irregularly sampled,575

by conditioning the generator and discriminator with the timestamps of the time series.576

Auxiliary Classifier GAN (ACGAN) [44] extends and improves on CGAN by introducing an577

auxiliary classifier to predict the class label of the generated data. Chen et. al. [13] adopt a data578

augmentation scheme based on ACGAN to directly generate different features of the desired579

acoustic scene with input scene conditions.580

InfoGAN [14] learns interpretable representations to generate synthetic data with specific581

characteristics. InfoGAN introduces a classifier to maximize the mutual information between582

conditional variables and the generated data. This allows it to associate the conditional variable583

with the characteristics of the generated data. It does this in a completely unsupervised manner.584

This means that some features of the generated data can be controlled by changing a latent vector.585

But what features the individual element of the factor corresponds to are not known a priori. Wan et.586

al.[64] propose an InfoGAN based model to learn the coupling relations among bridge monitoring587

factors and then generate synthetic bridge monitoring data with various characteristics to augment588

the existing monitoring data.589

6 CONCLUSIONS AND DISCUSSION590

6.1 Conclusions and Extensions591

In this paper, we presented a novel GAN based method for artificially generating block storage592

traces. The generation method is designed to capture the overall characteristics of the given real593

storage traces, and yet sports trace segments that show diverse characteristics. Such a “similarity594

with diversity” characteristic makes the mechanism useful for generating many instances of the595

trace. We also use several different methods to evaluate the quality of the generated trace including596

its statistical properties, SIST similarity, “heat" prediction performance, and predicted latency by597

SSD simulator.598

One potentially useful aspect in generating storage traces is its specialization to certain categories599

such as heavy traffic, highly variable traffic, etc. We have not pursued this angle in this paper.600

Some simple post-processing techniques (e.g., those that scale the mean or variance or cause other601

systematic perturbations to the traffic) can accomplish such tasks without disrupting the correlation602

structure of the time series. Nevertheless, it is possible to train a generator that explicitly takes603

a class designator as input and generates traffic according to those characteristics. Many image604

GAN models have explored the generation of class-specific images such as the CGAN, ACGAN,605

and InfoGAN models discussed in the Related Work section. These methods could also be adapted606

to generate class-specific storage traces.607

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.



Synthetic Data Generation for Storage Trace Augmentation 23

In the future, we plan to extend our technique to other spatio-temporal data such as data608

concerning vegetation, spread of tree and crop pathogens, or spatio-temporal variations in various609

socio-economic factors.610

6.2 Limitations of the Generation Mechanism611

Our method is concerned with storage-side (block) accesses, and does not deal with host-side (file)612

accesses. It may be possible to adapt the model for file-traces, but we have not explored that angle.613

Also, our focus is on access characteristics rather than the contents of what is accessed. Most614

available traces do not include block contents for obvious reasons, and most use cases only need615

the accesses. However, use cases like deduplication do need the contents.616

GANs are generally difficult to train and require significant amount of resources to do so. Beyond617

the initial training, retraining may be necessary if the workloads change to the extent that many618

new sustained patterns emerge that the GAN did not come across during the training. It may also619

be necessary to tune the hyperparameters for environments that are very different from the ones620

considered here.621

The GAN model only generates samples based on the prepared input data, i.e., the number622

of accesses to a chunk in a given timeslot. Within a timeslot, no further timing information is623

generated by GAN. It is possible to order and space out the accesses within a timeslot according to624

the temporal characteristics of the training data; however, that has not been a focus of this work.625

It is important to note that the GAN traffic generation works by inputting a latent vector. After626

training, it is possible to input different latent vectors and generate multiple different instances627

of the traffic which sample from the learned underlying distribution of real traces. However, the628

relationship between the latent vector and the characteristics of the generated trace is extremely629

complex and not precisely controllable in many GAN based models. Nevertheless, one could exploit630

the latent vector dependence to generate many instances of traces with different characteristics.631

This is useful even though our architecture does not assign any sequential relationship between632

them.633

As with any machine learning based method, the model can only learn from the patterns that it634

observes in the training data. It is expected that as the length of the training trace increases, it will635

contain more varied patterns that the GAN model can learn and thus reflect those in the generated636

traffic. However, exactly how long a trace is needed to capture all the patterns depends on the trace637

and is quite difficult to characterize. If the real traffic changes drastically following the training of638

the GAN model, the model would not be able to reflect that in the generated traffic. It is, however,639

possible to continue training the model in the background with recent traces, and thus be able to640

follow the traffic evolution.641

ACKNOWLEDGMENTS642

We are grateful to Dr. Jeremy Swift from Dell Corporation for a long-term collaboration on this643

work. His expertise and insights into the enterprise storage systems, gained from his 25+ years of644

work at Dell, were immensely valuable in ensuring that this work stayed in tune with the needs of645

designing and improving real enterprise storage systems. The initial part of this work was also646

funded by Dell, and we are grateful for the funding. The subsequent part of the work was funded647

by the NSF grant CNS-2011252.648

REFERENCES649

[1] 2016. Iozone Filesystem Benchmark — iozone.org. https://www.iozone.org/.650

[2] 2020. SPECstorage Solution 2020 — spec.org. spec.org/storage2020/.651

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.

https://www.iozone.org/
spec.org/storage2020/


24 Lu Pang and Krishna Kant

[3] Anis Alazzawe, Amitangshu Pal, and Krishna Kant. 2020. Efficient big-data access: Taxonomy and a comprehensive652

survey. IEEE transactions on big data 8, 2 (2020), 356–376.653

[4] Anthreas Antoniou, Amos Storkey, and Harrison Edwards. 2018. Data Augmentation Generative Adversarial Networks.654

https://openreview.net/forum?id=S1Auv-WRZ655

[5] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein GAN. arXiv:1701.07875 [stat.ML]656

[6] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein Generative Adversarial Networks. In657

Proceedings of the 34th International Conference on Machine Learning - Volume 70 (Sydney, NSW, Australia) (ICML’17).658

JMLR.org, 214–223.659

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. 2012. Workload analysis of a large-660

scale key-value store. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint international conference on661

Measurement and Modeling of Computer Systems. 53–64.662

[8] Jens Axboe. 2022. Flexible I/O tester. https://fio.readthedocs.io/en/latest/fio_doc.html.663

[9] Philip Bachman, R Devon Hjelm, and William Buchwalter. 2019. Learning Representations by Maximizing Mutual664

Information Across Views. In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelz-665

imer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/666

paper_files/paper/2019/file/ddf354219aac374f1d40b7e760ee5bb7-Paper.pdf667

[10] Yoav Benyamini and Joram Lindenstrauss. 1998. Geometric nonlinear functional analysis. Vol. 48. AmericanMathematical668

Soc.669

[11] Leo Breiman. 2001. Random Forests. Machine Learning (2001). https://doi.org/10.1023/A:1010933404324670

[12] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2019. Large Scale GAN Training for High Fidelity Natural Image671

Synthesis. In International Conference on Learning Representations.672

[13] Hangting Chen, Zuozhen Liu, Zongming Liu, and Pengyuan Zhang. 2020. ACGAN-based data augmentation integrated673

with long-term scalogram for acoustic scene classification. arXiv preprint arXiv:2005.13146 (2020).674

[14] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. 2016. Infogan: Interpretable675

representation learning by information maximizing generative adversarial nets. Advances in neural information676

processing systems 29 (2016).677

[15] Adriel Cheng. 2019. PAC-GAN: Packet generation of network traffic using generative adversarial networks. In 2019 IEEE678

10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). IEEE, 0728–0734.679

[16] Jeffrey A. Clark. 2015. Pillow (PIL Fork) Documentation. https://buildmedia.readthedocs.org/media/pdf/pillow/latest/680

pillow.pdf681

[17] Intel Corporation. 2023. Intel Optane Technology. https://www.intel.com/content/www/us/en/architecture-and-682

technology/optane-technology/optane-for-data-centers.html.683

[18] Archana Ganapathi, Yanpei Chen, Armando Fox, Randy Katz, and David Patterson. 2010. Statistics-driven workload684

modeling for the cloud. In 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010). IEEE,685

87–92.686

[19] Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L Wiener, Armando Fox, Michael Jordan, and David687

Patterson. 2009. Predicting multiple metrics for queries: Better decisions enabled by machine learning. In 2009 IEEE688

25th International Conference on Data Engineering. IEEE, 592–603.689

[20] Gregory R Ganger. 1995. Generating representative synthetic workloads: An unsolved problem. In Proc. Computer690

Measurement Group (CMG) Conference, Dec. 1995.691

[21] Gregory R Ganger, Bruce L Worthington, and Yale N Patt. 1999. The DiskSim simulation environment version 2.0692

reference manual.693

[22] María Engracia Gomez and Vicente Santonja. 2000. A new approach in the modeling and generation of synthetic694

disk workload. In Proceedings 8th International Symposium on Modeling, Analysis and Simulation of Computer and695

Telecommunication Systems (Cat. No. PR00728). IEEE, 199–206.696

[23] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and697

Yoshua Bengio. 2014. Generative adversarial nets. Advances in neural information processing systems 27 (2014).698

[24] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and699

Yoshua Bengio. 2020. Generative adversarial networks. Commun. ACM 63, 11 (2020), 139–144.700

[25] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville. 2017. Improved701

Training of Wasserstein GANs. In Advances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg,702

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc. https:703

//proceedings.neurips.cc/paper_files/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf704

[26] Alireza Haghdoost, Weiping He, Jerry Fredin, and David HC Du. 2017. On the Accuracy and Scalability of Intensive705

{I/O} Workload Replay. In 15th USENIX Conference on File and Storage Technologies (FAST 17). 315–328.706

[27] Kay Gregor Hartmann, Robin Tibor Schirrmeister, and Tonio Ball. 2018. EEG-GAN: Generative adversarial networks707

for electroencephalograhic (EEG) brain signals. arXiv preprint arXiv:1806.01875 (2018).708

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.

https://openreview.net/forum?id=S1Auv-WRZ
https://arxiv.org/abs/1701.07875
https://fio.readthedocs.io/en/latest/fio_doc.html
https://proceedings.neurips.cc/paper_files/paper/2019/file/ddf354219aac374f1d40b7e760ee5bb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/ddf354219aac374f1d40b7e760ee5bb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/ddf354219aac374f1d40b7e760ee5bb7-Paper.pdf
https://doi.org/10.1023/A:1010933404324
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-technology/optane-for-data-centers.html
https://proceedings.neurips.cc/paper_files/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/892c3b1c6dccd52936e27cbd0ff683d6-Paper.pdf


Synthetic Data Generation for Storage Trace Augmentation 25

[28] Haochen He, Erci Xu, Shanshan Li, Zhouyang Jia, Si Zheng, Yue Yu, Jun Ma, and Xiangke Liao. 2023. When Database709

Meets New Storage Devices: Understanding and Exposing Performance Mismatches via Configurations. Proceedings of710

the VLDB Endowment 16, 7 (2023), 1712–1725.711

[29] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising Diffusion Probabilistic Models. In Advances in Neural712

Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Asso-713

ciates, Inc., 6840–6851. https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-714

Paper.pdf715

[30] Everspin Technologies Inc. 2023. Storage Solutions. https://www.everspin.com/storage-solutions.716

[31] KIOXIA America Inc. 2023. XL-FLASH | Storage Class Memory (SCM). https://americas.kioxia.com/en-us/business/717

memory/xlflash.html.718

[32] Barry L Kalman and Stan C Kwasny. 1992. Why tanh: choosing a sigmoidal function. In [Proceedings 1992] IJCNN719

International Joint Conference on Neural Networks, Vol. 4. IEEE, 578–581.720

[33] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2018. Progressive Growing of GANs for Improved Quality,721

Stability, and Variation. In International Conference on Learning Representations.722

[34] Diederik P. Kingma et al. 2017. Adam: A Method for Stochastic Optimization. arXiv:1412.6980 [cs.LG]723

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classification with Deep Convolutional724

Neural Networks. In Advances in Neural Information Processing Systems, F. Pereira, C.J. Burges, L. Bottou, and725

K.Q. Weinberger (Eds.), Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2012/726

file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf727

[36] Zewen Li, Fan Liu, Wenjie Yang, Shouheng Peng, and Jun Zhou. 2021. A survey of convolutional neural networks:728

analysis, applications, and prospects. IEEE transactions on neural networks and learning systems 33, 12 (2021), 6999–7019.729

[37] Yang Liu, Raghul Gunasekaran, Xiaosong Ma, and Sudharshan S. Vazhkudai. 2014. Automatic identification of730

application I/O signatures from noisy server-side traces. In Proceedings of the 12th USENIX Conference on File and731

Storage Technologies (Santa Clara, CA) (FAST’14). USENIX Association, USA, 213–228.732

[38] Seagate Technology LLC. 2023. Everything You Want to Know About Hard Drives. https://www.seagate.com/blog/733

everything-you-wanted-to-know-about-hard-drives-master-dm/.734

[39] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. 2013. Rectifier nonlinearities improve neural network acoustic735

models. In Proc. icml, Vol. 30. Atlanta, Georgia, USA, 3.736

[40] Inc. Micron Technology. 2023. What is a hard disk drive (HDD)? https://www.crucial.com/articles/pc-builders/what-737

is-a-hard-drive.738

[41] Mehdi Mirza and Simon Osindero. 2014. Conditional Generative Adversarial Nets. CoRR abs/1411.1784 (2014).739

arXiv:1411.1784 http://arxiv.org/abs/1411.1784740

[42] Dmytro Mishkin and Jiri Matas. 2015. All you need is a good init. CoRR (2015).741

[43] Dushyanth Narayanan et al. 2008. Write off-loading: Practical power management for enterprise storage. ACM742

Transactions on Storage (TOS).743

[44] Augustus Odena, Christopher Olah, and Jonathon Shlens. 2017. Conditional Image Synthesis with Auxiliary Classifier744

GANs. In Proceedings of the 34th International Conference onMachine Learning (Proceedings of Machine Learning Research,745

Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR, 2642–2651. https://proceedings.mlr.press/v70/odena17a.html746

[45] Lu Pang et al. 2019. Data Heat Prediction in Storage Systems Using Behavior Specific Prediction Models. In 38th IEEE747

International Performance Computing and Communications Conference (IPCCC). IEEE.748

[46] Lu Pang and Krishna Kant. 2022. SIST: A Similarity Index for Storage Traffic. Proc. of NAS confernce (Oct 2022).749

[47] J. R. Quinlan. 1986. Induction of decision trees. Machine Learning (1986). https://doi.org/10.1007/BF00116251750

[48] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representation learning with deep convolutional751

generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015).752

[49] Giorgia Ramponi, Pavlos Protopapas, Marco Brambilla, and Ryan Janssen. 2018. T-cgan: Conditional generative753

adversarial network for data augmentation in noisy time series with irregular sampling. arXiv preprint arXiv:1811.08295754

(2018).755

[50] Markus Ring, Daniel Schlör, Dieter Landes, and Andreas Hotho. 2019. Flow-based network traffic generation using756

generative adversarial networks. Computers & Security 82 (2019), 156–172.757

[51] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1986. Learning representations by back-propagating758

errors. nature 323, 6088 (1986), 533–536.759

[52] Anirudh Sabnis and Ramesh K Sitaraman. 2022. JEDI: model-driven trace generation for cache simulations. In760

Proceedings of the 22nd ACM Internet Measurement Conference. 679–693.761

[53] Masaki Saito and Eiichi Matsumoto. 2016. Temporal Generative Adversarial Nets. CoRR abs/1611.06624 (2016).762

arXiv:1611.06624 http://arxiv.org/abs/1611.06624763

[54] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and Xi Chen. 2016. Improved764

Techniques for Training GANs. In Advances in Neural Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg,765

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.

https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://www.everspin.com/storage-solutions
https://americas.kioxia.com/en-us/business/memory/xlflash.html
https://americas.kioxia.com/en-us/business/memory/xlflash.html
https://americas.kioxia.com/en-us/business/memory/xlflash.html
https://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://www.seagate.com/blog/everything-you-wanted-to-know-about-hard-drives-master-dm/
https://www.seagate.com/blog/everything-you-wanted-to-know-about-hard-drives-master-dm/
https://www.seagate.com/blog/everything-you-wanted-to-know-about-hard-drives-master-dm/
https://www.crucial.com/articles/pc-builders/what-is-a-hard-drive
https://www.crucial.com/articles/pc-builders/what-is-a-hard-drive
https://www.crucial.com/articles/pc-builders/what-is-a-hard-drive
https://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1411.1784
https://proceedings.mlr.press/v70/odena17a.html
https://doi.org/10.1007/BF00116251
https://arxiv.org/abs/1611.06624
http://arxiv.org/abs/1611.06624


26 Lu Pang and Krishna Kant

I. Guyon, and R. Garnett (Eds.), Vol. 29. Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2016/766

file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf767

[55] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. 2016. Improved768

Techniques for Training GANs. CoRR abs/1606.03498 (2016). arXiv:1606.03498 http://arxiv.org/abs/1606.03498769

[56] Patrice Y Simard, David Steinkraus, John C Platt, et al. 2003. Best practices for convolutional neural networks applied770

to visual document analysis.. In Icdar, Vol. 3. Edinburgh.771

[57] Vasily Tarasov, Santhosh Kumar, Jack Ma, Dean Hildebrand, Anna Povzner, Geoff Kuenning, and Erez Zadok. 2012.772

Extracting flexible, replayable models from large block traces.. In FAST, Vol. 12. 22.773

[58] Vasily Tarasov, Amar Mudrankit, Will Buik, Philip Shilane, Geoff Kuenning, and Erez Zadok. 2012. Generating realistic774

datasets for deduplication analysis. In 2012 USENIX Annual Technical Conference (USENIX ATC 12). 261–272.775

[59] Arash Tavakkol, Juan Gómez-Luna, Mohammad Sadrosadati, Saugata Ghose, and Onur Mutlu. 2018. MQSim: A776

Framework for Enabling Realistic Studies of Modern Multi-Queue SSD Devices. In FAST.777

[60] Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. [n. d.]. Effective Data Augmentation With778

Diffusion Models. In ICLR 2023 Workshop on Mathematical and Empirical Understanding of Foundation Models.779

[61] Avishay Traeger, Erez Zadok, Nikolai Joukov, and Charles P Wright. 2008. A nine year study of file system and storage780

benchmarking. ACM Transactions on Storage (TOS) 4, 2 (2008), 1–56.781

[62] Evgeniya Ustinova and Victor Lempitsky. 2016. Learning Deep Embeddings with Histogram Loss. In Proceedings of the782

30th International Conference on Neural Information Processing Systems (Barcelona, Spain) (NIPS’16). Curran Associates783

Inc., Red Hook, NY, USA, 4177–4185.784

[63] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. 2016. Generating videos with scene dynamics. Advances in785

neural information processing systems 29 (2016).786

[64] Ping Wan, Hongli He, Ling Guo, Jiancheng Yang, and Jie Li. 2021. InfoGAN-MSF: a data augmentation approach for787

correlative bridge monitoring factors. Measurement Science and Technology 32, 11 (2021), 114008.788

[65] Mengzhi Wang, Anastassia Ailamaki, and Christos Faloutsos. 2002. Capturing the spatio-temporal behavior of real789

traffic data. Performance Evaluation 49, 1-4 (2002), 147–163.790

[66] Jinsung Yoon, Daniel Jarrett, andMihaela Van der Schaar. 2019. Time-series generative adversarial networks (TimeGAN).791

Advances in neural information processing systems 32 (2019).792

[67] Jianyong Zhang, Anand Sivasubramaniam, Hubertus Franke, Natarajan Gautam, Yanyong Zhang, and Shailabh Nagar.793

2004. Synthesizing representative i/o workloads for tpc-h. In 10th International Symposium on High Performance794

Computer Architecture (HPCA’04). IEEE, 142–142.795

[68] Yu Zhang, Ping Huang, Ke Zhou, HuaWang, Jianying Hu, Yongguang Ji, and Bin Cheng. 2020. OSCA: An Online-Model796

Based Cache Allocation Scheme in Cloud Block Storage Systems. In 2020 USENIX Annual Technical Conference (USENIX797

ATC 20). USENIX Association, 785–798. https://www.usenix.org/conference/atc20/presentation/zhang-yu798

ACM Trans. Storage, Vol. 1, No. 1, Article . Publication date: April 2024.

https://proceedings.neurips.cc/paper_files/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://arxiv.org/abs/1606.03498
http://arxiv.org/abs/1606.03498
https://www.usenix.org/conference/atc20/presentation/zhang-yu

	Abstract
	1 Introduction
	2 Background
	2.1 Emerging Storage Systems
	2.2 Data Augmentation
	2.3 Generative Models

	3 Data Generation Method
	3.1 Challenges in Storage Trace Generation Model
	3.2 Data Preparation
	3.3 Model and Training
	3.4 Loss Functions

	4 Evaluation and Discussion
	4.1 Publicly Available Traces and Characteristics
	4.2 Evaluation

	5 Related Work
	5.1 Statistic property based generation
	5.2 Data Driven based generation

	6 Conclusions and Discussion
	6.1 Conclusions and Extensions
	6.2 Limitations of the Generation Mechanism

	Acknowledgments
	References

