
Clustered DBMS Scalability under Unified Ethernet Fabric

Krishna Kant
Intel Corporation

Amit Sahoo
Univ. of California, Davis

Abstract

In this paper, we study the performance of clustered DBMS
running on-line transaction processing (OLTP) workload
and using TCP/IP over Ethernet as a “unified fabric” for
inter-process communication, iSCSI based storage access,
and networking traffic. The study is primarily based on a
comprehensive simulation model of such systems that we
have built. In particular, we study scalability, impact of
fabric latency and effect of cross traffic on the DBMS per-
formance. We find that while the protocol overhead has a
large impact on performance, the end to end latency has
comparatively lesser impact. We also find that interfer-
ing high priority traffic from other applications can have
a significant performance impact by delaying critical con-
trol messages.
Key words: Clustered database, TCP/IP, Quality of Ser-
vice, Latency Impact, Thread switching

1 Introduction

In the e-business environment, mid-tier and backend ap-
plications have traditionally been implemented on SMPs
(symmetric multiprocessors) because of their easier pro-
gramming model and efficient inter-process communica-
tion (IPC). However, SMP implementations have some se-
rious drawbacks including high cost, inability to grow the
system gradually as the need arises and poor scalability.
The clustering model provides an attractive alternative to
address these issues provided that SMP applications can
be ported without significant changes. The attractiveness
of clustering model is further aided by the emergence of
high bandwidth, low-latency cluster interconnect technolo-
gies such as Infiniband architecture (IBA) [13] and HW of-
floaded TCP/IP over Ethernet [7, 15]. On the software side,
there are already solutions available for running applica-
tions without a painstaking manual partitioning in order to
minimize inter-process communication (IPC). For exam-
ple in the database space, clustered systems such as Or-
acle 9i/10g have claimed that a good concurrency control
model coupled with a distributed caching service can avoid
the need for database partitioning [9]. However, there isn’t
much information available in the open literature on the
performance, scalability and stress behavior of such sys-

tems. In particular, although there are studies of clustered
system scalability, they are mostly confined to either sci-
entific computation (MPI based) or rather small clusters (8
way). In this paper we provide such an analysis based on a
comprehensive simulation model and study the impact of
fabric latency and network congestion on scalability.

The primary focus of our study is a cluster using TCP/IP
over Ethernet as the “unified” clustering fabric, since we
believe that specialized fabrics such as IBA, Myrinet, QS-
Net, etc, will remain niche due to huge installed based of
TCP/IP/Ethernet systems. In particular, we consider the
scenario of a single high speed “pipe” coming into a server
as aunified fabricthat carries all traffic types, which in this
case includes inter-process communication (IPC), iSCSI
based storage, and normal client-server traffic. Such an ap-
proach requires that the unified fabric work almost as well
as isolated fabrics under stress conditions. Therefore, un-
derstanding the behavior of the clustered application under
stress and other abnormal scenarios (e.g., under high la-
tency) is of paramount importance. This paper attempts to
contribute to this understanding via a very detailed simula-
tion model of clustered OLTP server. Currently the model
is still weak in validation against measurements, which we
hope to rectify in coming months; however, we believe
many of the trends are captured accurately.

2 Cluster Architecture, Workload
and Modeling

In this section we briefly describe the modeled database
clustering architecture, the workload driving it and how the
simulation captures the essence of such systems.

The main reason to consider clustered databases as a tar-
get application is that such systems are already available
commercially and represent an important class of appli-
cations from both storage and IPC traffic perspective. In
contrast, front-end systems have no IPC traffic and low
storage use. Most mid-tier systems have very little IPC
traffic and their performance is not very sensitive to IPC
latencies. From a IPC latency perspective, clustered imple-
mentation from the high-performance computing (HPC) is
quite relevant, however, HPC workloads tend to be much
more specialized and the IPC needs can vary substantially

1



K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 2

from one implementation to another [3].

2.1 Database Clustering Architecture

Clustered DBMS implementations cover a wide range in
terms of coupling of various nodes. On one extreme, there
is the “shared nothing” approach, where each node has its
own independent memory and IO subsystem. In this case,
the database must necessarily be partitioned among nodes
– either statically or dynamically. A more coupled ap-
proach is “shared IO” approach, where all nodes access a
centralized IO subsystem which holds the database. The
IO subsystem in this case is invariably a Fiber-channel
based SAN (system area network). An even more cou-
pled approach is essentially a NUMA approach where the
node may also have access to a globally shared memory (in
addition to individual memories). Such a model begins to
look like a SMP and is not considered in this paper.

The shared IO model has been adopted in Oracle 9i/10g
commercial DBMS and is attractive in that it does not re-
quire any partitioning effort in porting SMP applications
to clusters. However, since we are interested in Ethernet
as a unified fabric which carries storage traffic as well, we
primarily consider the case of iSCSI (Internet SCSI) based
storage available at each node. One attraction of such a
“distributed storage” model is that it allows inexpensive
IO system at each node which expands naturally with the
cluster size. The partitioning scheme for this storage model
will be discussed later. In either case, however, we assume
a coordination mechanism similar to thecache fusionar-
chitecture used by Oracle 9i/10g [9].

From a very high level perspective, Thecache fusionar-
chitecture essentially extends the cache-memory coordina-
tion in a SMP to the memory-disk coordination in a clus-
ter. That is, each node has its private database memory
(usually calledbuffer cache) and a shared secondary stor-
age. Like the SMP, such a system needs a coherence proto-
col, which could also be MESI protocol used in SMPs (or
some variant thereof) [14]. Unfortunately, such a proto-
col would require substantial inter-process communication
(IPC) traffic to accomplish the necessary “snooping” and
“invalidation” of copies held by various nodes. Oracle’s
mechanism, called RAC (real application cluster), attempts
to avoid this overhead by exploitingmulti-version concur-
rency control(MCC) [1].

The basic idea of MCC is to create a newversionof
the table row (or a larger unit, depending on the granu-
larity) each time it is updated. MCC avoids any “read-
locks” since a transaction can always find the appropriate
version of the data to read. Write/update accesses still re-
quire locking, however, there is no need for a traditional
“invalidation”; instead, the concurrency control needs to
ensure that only the most recent version is written to. The
price for MCC must be paid in terms of managing multiple

versions, additional memory requirements, fatter IPC data
messages, and more disk IO (due to less efficient memory
use).

The basic value proposition of cache fusion is that re-
trieving data out of the buffer cache of a remote node is
significantly cheaper than reading it from the disk (even in
case of local disks). Thus, the overhead and end-to-end la-
tency of IPC vs. that of disk IO are crucial parameters for
the performance and scalability of cache fusion based clus-
tered DBMS. It is well known that the traditional OS Ker-
nel based TCP/IP implementations are quite inefficient [7].
Nevertheless, the corresponding IPC overheads and laten-
cies are still considerably smaller than those for disk IO.
Thus, one would expect small clusters to perform well even
with the traditional “SW TCP” solutions. With HW TCP
implementations, good scaling should be possible even for
rather large clusters.

Cache fusion uses a directory based coherence scheme
that proceeds as follows. Suppose that a nodeA expe-
riences a miss on DB blockX in its local buffer cache.
Node A then determines (via a local table lookup) that
some node, sayB, holds the directory information for this
block. The sequence of actions is then as follows:

1. A requests the blockX from nodeB. B looks up the
directory and returns positive or negative response to
A.

2. In case of a negative response,A obtains blockX
from the disk (local or remote).

3. In case of a positive response,A waits to receive the
block from some nodeC which is determined byB
as the data supplier.B sends a message toC, andC
responds toA directly with the block. (The last one is
IPC data message, all others are control messages).

4. A eventually informsB of successful retrieval so that
B can update the directory indicatingA also as the
data holder. (IfA had to evict a block from its buffer
to accommodate the new one, it informsB of that
too.)

Note that it is possible thatA = B, or B = C; in these
cases some operations become local and the corresponding
messaging is not needed.

The IPC data transfer is not limited to a single DB page –
the transfer size could range anywhere from 4KB to 64KB.
The optimal transfer size depends on a number of factors,
and we do not attempt to adjust it for different runs of the
model. Instead, we assume a basic IPC transfer size of 8
KB (same as disk block size).

Other than the block transfer and directory manage-
ment related IPC traffic, the scheme involves a number
of other IPC messages for such things as write lock ac-
quisition/release, transaction commits/aborts, notification



K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 3

of block caching/evictions to the directory node, check-
pointing, directory migration, etc. These operations may
result in a significant number of additional IPC messages
between nodes.

2.2 Database Workload

Given its popularity and availability of detailed
characterization data, the TPC-C benchmark
(http://www.tpc.org/tpcc/default.asp )
is a natural choice for an OLTP database workload.
TPC-C models operations of a wholesale parts supplier
operating out of a number of warehouses and their asso-
ciated sales districts. Each warehouse supplies 10 sales
districts, and each district serves 3000 customers. The
database manages 100K parts in terms of orders, prices,
stock level, etc. The workload has 5 transactions, namely
new-order (enter a new order which requests 10 parts on
the average), payment, order status, delivery (process a
batch of ten orders for delivery), and stock level (level of
stock of the items ordered by last 20 orders). The nominal
fractions of these transactions are 43%, 43%, 5%, 5%
and 4% respectively.1 The performance metric reported
by TPC-C is the number of “new-orders” processedper
minuteand is expressed as tpm-C.

The benchmark involves 9 tables:warehouse, district,
customer, stock, item, new-order, order, order-line and his-
tory. Of these, the first 5 tables are fixed, but others are
variable. New-order table grows & shrinks as new orders
come in and are retired. The last 4 tables keep a perma-
nent record of transactional operations and thus only grow.
The benchmark is designed such thatthe database size
increases linearly with the throughput. In particular, the
number of configured warehouses is approximately tpm-
C/12.5. Sizes of all tables, except item, are multiples of
warehouses. The item table stays constant at 100K rows.
The largest tables are typically customer and stock and
may require significant space for their indices. Although
the variable tables like order, order-line and history are also
quite large, access to them is quite localized.

A notable characteristic of TPC-C transactions is that
they all refer to a single warehouse. In fact, according
to the specification, a given “terminal” always generates
transactions with the same warehouse-id. This, coupled
with the fact that most tables have #warehouses as a mul-
tiplier, makes TPC-C database trivially partitionable: as-
sign equal blocks of warehouses to each server and direct
queries based on the warehouse. For this reason, TPC-C
is usually considered an inappropriate workload for clus-
tering studies. We address this weakness by tweaking the
workload behavior according to our needs. In particular,
we still partition the database in blocks of warehouses, but

1Actually, TPC-C allows new-orders to go up to 44% at the cost of
delivery, but this may have some undesirable consequences.

do not necessarily direct queries to the right sever. Instead,
we introduce the notion ofaffinity. An affinity of 1.0 corre-
sponds to the case where a query always goes to the server
that hosts the referenced warehouse. An affinity ofα < 1
means that the query goes to the right server with probabil-
ity α and to a random server with probability1− α.

2.3 Overview of Cluster simulation Model

The simulation model called distributed cluster emulator
(DCLUE) was developed using the simulation package
OPNET (www.opnet.com ). OPNET provides a fairly
complete emulation of the network infrastructure includ-
ing TCP, IP, and Ethernet MAC layers, QoS support, com-
mercial switches and routers, etc. DCLUE was built on top
of the OPNET provided TPAL (transport adaptation layer)
which can support multiple transports underneath.

The model implements cache fusion, multiversion con-
currency control, row/page locking, logging, disk IO,
database tables, table operations, buffering, IPC han-
dling, application processing, scheduling, thread switch-
ing, processor-memory data transfers, etc., often in
painstaking detail. As a result, it requires a rather fine-
grain model calibration. This is a problem in spite of
a wealth of available measurement data on TPC-C, TCP
processing, iSCSI processing, etc. On the positive side
however,the model isn’t dependent on high level results
that would be easily invalidated by a change in system pa-
rameters. For example, the hit ratio in the buffer cache is
not an input parameter; instead, it is a result of the actual
buffer cache management done by the simulation. This
allows us complete freedom in choosing the cached frac-
tions of various tables and their indices. Similarly, the
number of locks acquired per transaction, IPC messages
sent/received per transaction, log blocks written to the disk,
blocks read from the disk, data versions created per block,
context switches per transaction, etc. all fall out of the
actual functioning of the simulation rather than being arti-
ficially provided as some inconsistent set of values.

In spite of the detail, DCLUE obviously could not mimic
a real system at a fine grain level; the purpose of DCLUE is
to merely implement the most important functionality from
a performance perspective and thereby allow sensitivity
studies. Some of the high-level functionality missing from
DCLUE are failure recovery and checkpointing since these
are not essential for our purposes. Nevertheless, given the
model calibration based on actual measurement data, the
results provide valuable insights into the performance of
OLTP workloads on a cluster. In fact, the lack of idiosyn-
crasies of specific implementations allow us to study true
scaling characteristics of the cluster instead of being lim-
ited by the physical bottlenecks that invariably pop up in
measurement based studies.

Figure 1 shows the DCLUE network model. The net-



K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 4

Fig 1: A sample DCLUE model w/ 2 latas & 4 nodes per lata

work is organized as one or more “subclusters” which we
call LATAs (borrowed from telecom). The subclusters are
connected via an “outer-router” (or an “outer-switch” if
we only want layer 2 switching), at which the clients also
home in. The used router model is a standard OPNET pro-
vided model and represents 3M Gigabit routers fairly well.
Each subcluster has its own router (or switch). Each server
has internal disk subsystems for normal IO and logging,
but not all of them may be used. In the distributed storage
configuration, the disks are accessed remotely via iSCSI
protocol and via SCSI protocol locally. In the centralized
(or SAN based) storage configuration, the set of all IO sub-
systems forms a virtual SAN which is accessed via some
unmodeled SAN fabric.

One of the objectives for the model is to study potential
ill effects of running IPC and storage traffic on the normal
Ethernet network that carries miscellaneous other types
of traffic. For this, the model allows some extra clients
and servers to be added to the cluster (distinguished in the
model by a different address range). These clients/servers
can run some additional applications and cause that traf-
fic to interfere with DBMS traffic on various links and
routers. For example, Fig1 shows the nodes marked “ex-
tra client” and “extraserver” whose traffic interferes with
regular DBMS traffic on inter-lata links.

During initialization, each server establishes 2 TCP con-
nections to every other server: one for IPC messages (data
& control) and the other for iSCSI related traffic (com-
mand, status, data, etc.). The reason for separate connec-
tion is to allow QoS studies that treat IPC and storage sep-
arately. The TCP flavor used is Reno, SACK is enabled,
and so is ECN. TCP timer values are reduced by 100X
to make them suitable for data center operation. The re-
ceive buffers are set at 64KB. Various router parameters

are also adjusted to make them suitable for the data center.
The client-server TCP connections are established dynam-
ically on a per “business transaction” basis. A business
transaction consists of the sequence of TPC-C transactions
starting with the new-order in the proportions specified in
section2.2.

The complexity of the simulation model (about 12,000
lines of C-code) precludes a detailed discussion here; a
somewhat detailed description of many of its crucial as-
pects may be found in [6]. Here we provide only a very
high level overview of some of these features.

DCLUE basically builds the entire TPC-C database in the
memory and initializes it according to TPC-C rules. How-
ever, the information retained in the tables is only what
is essential to interpret and execute queries, which means
that DCLUE can use the storage much more efficiently
while still retaining the precise row sizes, rows per block,
etc. DCLUE also explicitly maintains B+-tree indices for
each table. Since the entire database is sitting in the main
memory, buffer cache operations merely change status of
the pages in question. Disk IO operations are still simu-
lated in terms of their latency andpath-length, i.e., number
of instructions required to execute an operation. Normal
disk IO optimizations such as elevator algorithm are im-
plemented on a per table basis. Although the disk writes
are lazy and could finish after the transaction is done, the
transaction does not commit without writing a log. The
logging is done on disks separate from those for normal
IO.

DCLUE implements fine-grain locking but dividing
pages into subpages. We found that we had to “tune”
the size of subpage for each table separately. In particu-
lar, the district table is accessed very frequently and need
a small subpage size. The locking mechanism itself in-



K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 5

volves 2 phases, where phase 1 performs “intention lock-
ing” (or latching) and brings in any missing data into the
buffer cache [12]. The phase 2 then actually attempts to
convert the latches into actual locks. Also, if a lock cannot
be acquired, a lock wait is performed on the first lock in the
sequence, and later failures result in lock release followed
by a delayed retry. The scheme appears to work well even
under high contention.

The multiversion concurrency control was implemented
using time-stamping mechanism and keeps track of min-
imum version no, maximum version number and current
version no. Space for versions is allocated from an over-
flow memory area. If this overflow area runs low, unpinned
pages from the buffer cache are stolen to replenish it.

The application processing is implemented in detail for
each operation (e.g., transaction initiation, table opera-
tion, etc.) and so are message sends and receives. In
particular, application processing is interrupted to handle
message receives. The calibration of variouspath-lengths
was done based on the NASA report on TPC-C [10] and
current TPC-C measurements. The data related to plat-
form characteristics is taken from a long list of compre-
hensive measurements available internally in Intel. Sim-
ilarly, data related to IO operations (e.g., accelerated and
non-accelerated TCP/IP, RDMA and iSCSI stacks) is taken
from internal prototypes and measurements [7, 15, 8, 4].

The most crucial aspect of the model is the modeling
of threads, thread switching, and its impact on proces-
sor caches. Basically, in a transactional workload, latency
can be hidden by simply having more concurrent threads.
However, given the processor cache size and working set of
each thread, only so many threads can be accommodated
conveniently. With larger number of threads, the context
switch penalty rises very sharply and the cache begins to
thrash. Capturing this behavior was essential to properly
model the impact of latency on performance. Fortunately,
we had available to us a very detailed characterization of
this and other OS aspects under Redhat Linux 7.3 OS [2].
This along with internal studies on TPC-C working set size
provided us with the requisite modeling of the threads.

The final aspect modeled in detail was the load on proces-
sor bus and memory channels and corresponding impact
on CPU stalls. This again is essential for accurate mod-
eling of platform level performance. Fortunately, this is
one area that is routinely studied in connection with per-
formance projections for various platform configurations
(e.g., see [5]). Also, a lot of information exists based on
both measurements and cycle-accurate workload simula-
tion of TPC-C. Yet, an accurate projection of MPI as a
function of affinity is challenging and is currently based
on some heuristics. Address bus, data bus and memory
channels are modeled as queuing systems and the result-
ing memory latency determines CPU stalls via the concept
of blocking factor(the fraction of latency visible to HW

threads). We exploited available data on Intel Pentium 4 to
calibrate this aspect of the model.

3 Cluster Performance Studies

In this section we use the DCLUE model to obtain a num-
ber of interesting results on scalability, latency sensitivity
and impact of cross traffic. As stated earlier, although stan-
dard TPC-C specification is exploited heavily in the imple-
mentation and model calibration, we are interested in sce-
narios beyond basic TPC-C particularly in terms of the role
of IPC in clustered databases.

3.1 Configurations and database scaling

The configurations that we considered are clusters of Intel
Pentium IV class dual-processor (DP) servers. For these
systems, unclustered TPC-C measurements and validated
platform performance models were readily available and
thus allowed detailed result validation at affinity of 1.0. In
particular, our baseline server configuration is a 3.2GHz
P4 DP system with 1 MB second level cache, 133 MHz
bus and 16GB of DDR-266 memory. One such node de-
livers about 50K (unclustered) tpm-C performance, which
amounts to about 4K warehouse database. For the network
infrastructure, we stuck with the current 1 Gb/s ethernet
links and routers primarily because the current processors
are unable to drive 10 Gb/s bandwidth except in large clus-
ters. However, in a few cases, 10 Gb/s inter-lata links had
to be used since 1 Gb/s links were becoming a bottleneck.
The router models used are OPNET supplied 3M Gigabit
routers. Unless stated otherwise, we assume that both TCP
and iSCSI have been implemented in hardware in the fol-
lowing.

Unfortunately, a direct simulation of even a small clus-
ter will require long simulation times and huge amounts
of memory. The need for> 4GB memory would re-
quire the complexity of reworking the simulation to use
PSE/AWE on a 32-bit machine. To avoid these problems,
we consistently scaled all relevant parameters by a factor
of 100x. This means, for example, (1) Ethernet network
model is 10baseT instead of 1000baseAE, (2) disk para-
meters (seek, rotation, data transfer) are slowed down by
a factor of 100, (3) CPU, bus and memory channel fre-
quencies are cut down to 32MHz, 1.33MHz, and 1.33MHz
respectively, and (4) Various other delays such as chipset,
IP packet forwarding, context switch, interrupt handling,
etc. are also increased by a factor of 100x. In order to al-
low for a convenient scaling of all processing overheads,
all input parameters are expressed as “path-lengths” (i.e.,
number of instructions required to accomplish the opera-
tion) or as or path-length equivalents. This ensures that a
speed cut of CPU by 100x automatically scales everything



K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 6

by 100x. Finally, as for the database itself, a slow-down in
all platform and OS parameters will automatically reduce
the throughput (and hence the number of warehouses) by
100x – the only scaling required is for the item table, which
does not depend on number of warehouses. This is done by
reducing the number of items from 100K to 1000.

With the above scaling, it is possible to simulate reason-
able sized clusters. The results must be scaled back to cor-
respond to the original system.

3.2 Performance Scaling vs. Cluster Size

Before launching into latency and traffic impacts, it is im-
portant to first see how the cluster performance scales with
number of nodes. However, since scaling is the net result
of many complex activities in the system, we start by ex-
amining the latter first. One of most important aspects in
this regard is the growth of IPC messages as a function
of number of nodes. This is shown in Figs.2 and3 for
0.8 and 0 affinity respectively. Each figure shows the IPC
control and data messages per transaction separately. The
IPC messages are much smaller than data messages (about
250 bytes vs. more than 8KB) but significantly more nu-
merous. The interesting point to note is that the IPC mes-
sage count rises sharply at first but then “saturates” rather
quickly. As a result, number of IPC messages very quickly
cease to have any impact on scalability. In other words, no
nonlinearly in performance is expected due number of IPC
messages beyond small cluster sizes.

Note that the figures do show some variability and in-
consistency in the results. This is not so much a simulation
error but more because of wide variations in transaction
characteristics as discussed more fully in [6].

Figures4 and5 show lock waits per transaction and lock
wait time as a function of number of nodes. The variabil-
ity in the results is particularly pronounced here since both
of these parameters are very much a function of prevail-
ing conditions. Nevertheless, the trend is clear: Both lock
waits per transaction and average lock wait time increase
steadily with cluster size. The same holds for number of
lock failures per transaction (not shown). In the absence of
other effects, this aspect will limit the cluster scalability.

Let us now examine the scalability. Figure6 shows this
wrt cluster size and affinity as a parameter. The affinity
1.0 case is shown just as a reference and corresponds to
the case of perfect scaling. As expected, the scaling gets
progressively poorer as the affinity rises. However, the in-
teresting part is an almost linear scaling from 2 or 3 nodes
to 10 nodes. For larger clusters, locking related issues start
to come into effect. Also, topological issues also come into
play. For very small (i.e., 2 or 3 node clusters), the behav-
ior can also be different, and becomes more pronounced
with lower affinity.

The slope of the scalability line strongly depends on the

affinity. This is more clearly shown in Fig.7. The scal-
ing goes down rapidly with decrease in affinity. Another
important point to note is that the performance sensitivity
is high at high affinity values and decreases with the affin-
ity. In other words, tuning the system for small decreases
in affinity is more beneficial when the database is already
well partitioned.

In our experiments we considered 14-port
routers/switches, which would be typical for a bladed
system. Therefore, for cluster larger than 12 nodes (i.e.,
16 and 24 node cases shown here), we had to move to a
2-lata scenario. This brings in the latency and queuing
impacts of IPC traffic going across latas (through 2 extra
links and 2 extra routers). Consequently, there is a change
in slope around 12 nodes. However, it is important to note
that the increasing lock failures and lock waits also play a
substantial role in flattening out the scalability curve. In
fact, with affinity of 0.5 or less, the network effectively
stops scaling beyond 12 nodes. At 0.8 affinity, the scaling
is decent and perhaps could be improved with faster links
and routers.

At high affinities, the reason for continued scaling is the
lack of any shared bottlenecks in the system. In fact, most
resources increase linearly with the cluster size. For ex-
ample, each new node adds not just CPUs, but also many
others. These are: memory, memory channels, processor
bus, normal and logging disks, and router links. If the net-
work grows by adding more subnets, the stress on each
inner-router also remains unchanged. Even the lock con-
tention per page stays the same since TPC-C mandates that
the database size increase linearly with the throughput. At
low affinity values, although the MPI grows significantly,
the low realized throughput in this case prevents bus from
becoming a bottleneck for moderate cluster sizes.

Poorer scaling properties can be observed if the linear
growth in resources is broken. As an example, Fig8 shows
a case where the forwarding rate of the routers is reduced
from the normal 10000 packets/sec to 4000 packets/sec.
The scenario shown is for a single lata cluster. The rate
reduction causes the inner router to saturate beyond 8 con-
nected servers and it limits the scaling too.

Fig 9 shows another scenario, one where a single node
is responsible for all logging operations. Normally, each
node performs its own local logging operation. While this
yields good performance, it may make rollback very com-
plex since the recovery procedure would have to obtain
logs from all nodes, sort them by timestamp and then do
the rollback. Centralized logging makes recovery easier
but at the cost of potential bottleneck during normal oper-
ation. It is seen that the performance in this case is consis-
tently lower. Eventually as the node and local IO subsys-
tem capacity is reached, the cluster will stop scaling.

Fig 10 shows the impact of slower growth of DB size as
a function of throughput. For this we assumed that for up



K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 7

Fig 2: IPC messages per trans for 0.8 affinity Fig 3: IPC messages per trans for 0 affinity

Fig 4: Lock waits/trans vs. #nodes and affinities Fig 5: Lock wait time vs. #nodes and affinities

to 90K tpm-C, the database sizing is according to TPC-C
rules (No of warehouses calculated assuming 12.5 tpm-C
per warehouse). However, beyond this, the growth rate of
warehouses goes a square root of the additional through-
put, rather than linearly. With this, the contention for the
data increases as the cluster size increases. Consequently,
the throughput no longer goes up linearly with the cluster
size.

3.3 Protocol Overhead vs. Latency

Compared with specialized fabrics, the traditional SW
based TCP/IP suffers from two drawbacks: (a) signifi-
cant overhead of code execution (and associated OS bottle-
necks), and (b) significantly higher latency. It is important
not to confuse the two. For example, a significantly better
performance achieved with specialized fabrics could well
be due to much lower overhead rather than the ultra-low la-
tency. Fig.11 compares the performance of the following
3 cases for various affinities:

1. Both TCP fast path and iSCSI implemented in HW.
This is the normal case considered for most of our
experiments. For this, detailed TCP and iSCSI para-
meters were obtained from current offload prototypes.

2. TCP fast path in HW but iSCSI implemented in SW.

3. Both TCP and iSCSI implemented entirely in SW.
The SW TCP assumes single copy for sends and 2
copies for receives.

With affinity 1.0, there is no appreciable difference be-
tween the 3 cases. This is because in this case there almost
no IPC traffic (except for occasional access to item table
pages). Also, all disk accesses are local, so iSCSI doesn’t
come into play at all. The only traffic that benefits from
TCP acceleration is client-server. Consequently, the HW
TCP performance is slightly better than SW TCP, but not
by much.

With affinity 0.8, HW TCP provides almost twice as
much throughput as SW TCP. This is because the lower
overhead and latency of TCP substantially reduces both the
workload path-length and stall cycles. However, the differ-
ence between SW iSCSI and HW iSCSI is marginal. Partly
this is due to the fact that disk IO rate is small (since most
data comes from other buffer caches). Also, iSCSI imple-
mentation path-lengths are small except for the rather large
overhead of CRC calculations [4].

Finally, with affinity 0.5, the difference between HW and
SW TCP is even wider, but not by much. This result may
be surprising since the number of messages per transaction
does increase significantly from 0.8 to 0.5 (from 21 control
messages per transaction to about 54). However, with 0.5
affinity the major expense in completing a transaction is



K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 8

Fig 6: Scaling vs. nodes and affinity Fig 7: Scaling vs affinity and nodes

Fig 8: Impact of router forwarding rate on scalability Fig 9: Impact of single node logging on scalability

due to lock failures and corresponding path-length increase
and CPU stalls. The TCP/IP overhead thus has proportion-
ately smaller impact.

Next we consider the latency impact. High latency tol-
erance would allow a less expensive implementation and
even geographically distributed clusters. We study the im-
pact of latency by simply adjusting link lengths to achieve
the desired extra latency. It is important to note that this
type of latency introduction is quite different from laten-
cies within the platform (e.g., greater memory access la-
tency or context switch latency) which cause direct CPU
stalls. In a transactional workload, the true impact of la-
tency is felt only when the latency cannot be hidden by
employing additional threads; therefore, we do not place
any bound on the number of threads used. Figure12shows
performance of a 2 lata system where each of the two inter-
lata links includes one-half of the additional latency shown.
The two curves are for 0.8 and 0.5 affinity respectively. It
is seen that in both cases, a 1 ms additional delay results
in about 3.4% performance drop, whereas a 2 ms delays
causes a 6% performance drop. These latencies should be
viewed in the context of 1 Gb/sec link. If we were to con-
sider systems capable of driving 10 Gb/sec bandwidth, we
might expect similar drops with 1/10th as much latency.
That is, we could expect a 100µu latency to drop the per-
formance by a few percentage points. This is a rather low
sensitivity considering the fact that the normal end-to-end

delay with HW TCP can easily be brought down to 10-20
us.

We ran the experiment for 0.5 affinity (in addition to 0.8)
hoping to see higher latency sensitivity for this case be-
cause of much higher IPC messages per transaction. Sur-
prisingly, however, the sensitivity is the same in both cases.
This result is a result of worse threading behavior for 0.5
affinity and is discussed more fully in the next subsection.

One reason for low sensitivity of TPC-C to latency is
its huge computational component as indicated by a path-
length of 1.5M for the unclustered case, of which only
about 15% is related to disk IO. Other OLTP workloads are
significantly lighter on computation and thus could have
higher sensitivity to latency. To investigate this, we sim-
ply reduced all computational path lengths by a factor of
4 and the resulting situation is designated aslow computa-
tion’. (A more realistic method would be to actually make
the queries more light-weight, but that requires lot more
effort.) Figure13 shows that the change indeed makes the
workload lot more latency sensitive. In particular, 1 ms ad-
ditional latency now results in 10.4% drop in performance.

The results above show that the latency sensitivity is low
enough that there is no need for designing ultra-low la-
tency TCP/IP offload or router and switches.Furthermore,
if the database characteristics are like TPC-C, it should
be possible to geographically separate the subclusters (or
lata’s) on the scale of MAN distances. For example, if we



K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 9

Fig 10: Impact of slower growth in DB size Fig 11: Impact of TCP and iSCSI offload

Fig 12: Latency impact: normal comp, 0.5 & 0.8 affinity Fig 13: Latency impact: low comp, 0.5 & 0.8 affinity

have two subclusters with one of them located 50 miles
away, the additional 1 ms RTT increase will lower the
performance by only a few percent on systems driving 1
Gb/sec bandwidth.

3.4 QoS Impact

In this section, we examine how the IPC and storage traf-
fic is affected by other interfering traffic on the network.
The results presented here are for the case where the extra
clients/servers run FTP traffic with 50% GETs and 50%
PUTs. As usual, the FTP application sets up new TCP
connection for each transfer. This makes the interfering
traffic more “stubborn” than the IPC traffic which uses
a static connection. In particular, under overload condi-
tions IPC connection may get reset and may have to be re-
established. Since connection re-establishment involves a
lot of overhead and lost traffic, we have avoided this sit-
uation by artificially bumping up the maximum retrans-
mission count to rather high values. While this may not
be realistic, we were interested primarily in the effect of
cross-traffic as opposed to abnormal conditions created by
it. Clearly, some admission control scheme needs to be in
place to ensure that unlimited amount of traffic doesn’t get
into the network and cause connection resets.

We note here that we used FTP traffic here as a generic

interfering traffic, and weren’t overly concerned with
maintaining a real-life file size distribution. In fact, as
might be expected, setting the the file sizes too large would
punish the FTP connection severely in case of congestion,
and thus the traffic will not be able to wound the DBMS
traffic that much. On the other hand, with very small trans-
fers, FTP spends most of its effort in setting up/tearing
down connections and therefore isn’t a good interference
candidate. Consequently, we decided to make FTP file
sizes similar to DBMS transfer sizes. DBMS control mes-
sages are in 250 byte range and data messages are 8 KB
or larger (the larger part comes because of additional ver-
sioning data).

The scenario studied consisted of two latas, each with 4
nodes and an affinity of 0.8. We considered both normal
and low computation cases (see last subsection) for this.
In the normal computation case, the combined DBMS traf-
fic on the inter-lata links was about 650 Mb/sec and for
low computation case, the traffic is about 920 Mb/sec. The
cross traffic (FTP) was varied from 0 Mb/sec to 600 Mb/sec
in both cases. It important to note here that thecarried traf-
fic from both DBMS and FTP domains will depend on the
interference and QoS setup – the numbers here merely re-
fer toofferedtraffic in isolation.

With respect to QoS setup, we were primarily interested
in diff-serv, since int-serv may not be implemented or even



K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 10

Fig 14: Impact of cross traffic w/ normal computation Fig 15: Impact of cross traffic w/ low computation

necessary. The diff-serv space itself is huge and include 4
different mechanisms:

1. Queuing schemes (priority, WFQ, ...)

2. Packet drop schemes (tail drop, WRED, FRED, ...)

3. Traffic Policing/shaping (e.g., leaky bucket)

4. Connection admission control (CAC)

Fig 16: Impact of cross traffic w/ low computation

Each of these mechanisms involves numerous algorithms
and tuning parameters thereby making QoS setup a night-
mare. In view of this, we concentrate only on rather sim-
plistic scenarios because they are most likely to be found
within the data center. In particular, we report results on
only the following two cases:

1. Both traffic types are ofbest efforttype. This can be
described as the “lazy” approach, where the admin-
istrator makes no effort to exploit diff-serv mecha-
nisms.

2. DBMS traffic is best effort but the FTP traffic is as-
signed the DSCP AF21. This scenario was motivated
by the usual situation where most of the traffic runs
as best effort, but certain limited types of traffic use

diff-serv for business reasons or because they demand
good treatment. Admittedly, FTP isn’t a good exam-
ple of such a traffic, but for the purposes interference
study, it probably doesn’t matter.

In OPNET’s default implementation, a higher AF num-
ber really translates into a larger queue (and hence a lower
drop probability) and priority treatment. Note that since
the two traffics don’t share a client or server, priority treat-
ment is confined only to the router. Thus, unless the router
itself is congested, the priority queuing will not shut out the
lower priority traffic under overload. The routers use sim-
ple tail-drop (instead of RED, WRED, etc.) and no con-
nection admission control, policing or shaping policies are
employed.

Fig 14 shows the results for normal computation for the
two QoS arrangements. It is seen that with both traffics as
best-effort, interfering traffic does not make any significant
impact on performance. Instead, the performance goes
down marginally and at a slower rate as the traffic goes
up (until the link really saturates). The explanation is that
both DBMS and FTP traffics suffer due to competition and
back off. For the DBMS traffic, this simply means a longer
wait for the threads and hence more active threads. So long
as the thread wait is small enough for the request/response
to get through, the performance is not adversely affected.

With FTP traffic given a higher priority, the impact is
much more pronounced — a 30% drop in DBMS through-
put with only 100 Mb/sec of FTP traffic. The large drop
was found to be a result of increased queuing delay not
only at the links but also at the router, whose impact is
enhanced due to priority handling of FTP traffic. In par-
ticular, critical IPC control messages such as lock acquire
and release are delayed substantially while the FTP traffic
is establishing/tearing down connections or is transmitting
its data. It was found that not only the message delays al-
most doubled, the lock wait time also went up substantially
from about 2 ms to 10 ms.

Surprisingly however, most of the drop happens initially
only; with higher FTP traffic, the performance still goes



K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 11

down by much more slowly. The reason for this phenom-
enon has to do with caching and context switch behavior of
the DBMS traffic. The 100 Mb/sec interfering traffic dou-
bles delays for DBMS IPC traffic, which in turn requires
more active threads to keep the CPU busy. In fact, theav-
eragenumber of active threads jumps from about 20 to 75.
More threads, however, result in more competition for the
processor cache since each time a thread is scheduled it
needs to bring in its working set. Consequently, the aver-
age context switching cost skyrockets – from 17.7K CPU
cycles to 69.7K CPU cycles. The result is a significant
increase in CPU stalls, which increases the CPI (cycles
per instruction) from 11.5 to 16.9 although the path-length
does not change much. A larger cross traffic does increase
the number of active threads further; however, with cache
already almost thrashing, it is harder to afflict significant
additional damage.

Fig 15shows the results for low computation for the two
QoS arrangements. As expected, the effect of cross traffic
is more pronounced in this case. In particular, with both
traffic as best effort, the throughput drops from 6 K-tps to
5.2 K-tps due to 100 Mb/sec cross traffic, a 13% drop. With
high priority traffic, the drop is very severe – down to 3.4
K-tps, or a 43% drop. The greater sensitivity is obviously
due to greater dependence of transactions on getting their
IPCs completed in a timely manner.

Fig 16 shows the impact of affinity on performance in
the presence of cross traffic. For this, we have chosen the
low computation case. Since lower affinity leads to more
IPC messages per transaction, we might have expected the
sensitivity to increaseas the affinity goes down. In fact,
the result is just the opposite. The reason for the appar-
ent anomaly is that lower affinity already requires more
threads to keep the CPU busy (because of more commu-
nication). Thus further delays due to interference do not
degrade the cache performance quite as much. Also, once
the cache is on the verge of thrashing, further delays have
little chance of degrading the performance further.

4 Conclusions and Future Work

In this paper, we studied the performance of clustered
OLTP workloads as a function of a variety of parameters
with TCP/IP over Ethernet as a unified fabric. The main
result of the modeling appears to be that OLTP workloads
are more sensitive to protocol overhead rather than pure
end to end latency. The latency sensitivity obviously de-
pends on computation vs. communication, and may be
higher for OLTP workloads that are less computationally
intensive than TPC-C; however, the sensitivity appears low
enough that they may not benefit fromloadedend-to-end
latencies under a few tens of microseconds at 10 Gb/sec.

In terms of QoS issues, interfering traffic does not ad-

versely affect the DBMS performance so long as all traffic
is defaulted to be best effort or the interfering traffic is at
a lower priority. However, when competing with higher
priority traffic, a substantial increase in queuing delays
of crucial IPC messages such as lock acquisition/release
could result in significant performance loss. Thus it is im-
portant to examine QoS schemes that can minimize inter-
application interference and yet provide a good perfor-
mance for all. Moreover, to be really useful this should be
done almost autonomically without the data center admin-
istrator doing manual setups based on detailed workload
knowledge.

References

[1] P.A. Bernstein and N. Goodman, “Multiversion con-
currency control — theory and algorithms”, ACM
Trans on Database Systems ., 8(4):465–483, Decem-
ber 1983.

[2] P. Deng, “Telecom Linux performance evaluation”,
Intel measurement and evaluation report, Aug 2002.

[3] R. Dimitrov and A. Skjellum, “Impact of latency on
application performance”, Proc. of 4th MPI devel-
oper & user conference, Ithaca, NY, March 2000.

[4] A. Joglekar, “iSCSI Technology Investigation”, Intel
measurement and evaluation report, Nov 2004.

[5] K. Kant, “An Evaluation of Memory Compression
Alternatives”, Proc. of CAECW (Computer Architec-
ture Evaluation using Commercial Workloads), Feb
2003, Anaheim, CA.

[6] K. Kant, A. Sahoo and N. Jani, “DCLUE:
A Distributed Cluster Emulator”, available at
http://www.ccwebhost.com/DCLUE.

[7] K. Kant, “TCP offload performance for front-end
servers”, Proc. of GLOBECOM 2003, Dec 2003, San
Francisco, CA.

[8] S.R. King and F.L. Berry, ”Software RDMA over
TCP/IP on a general purpose CPU”, submitted for
publication.

[9] T. Lahiri, V. Srihari, et. al., “Cach Fusion: Extending
shared disk clusters with shared caches”, Proc. 27th
VLDB conference, Rome, Italy 2001.

[10] S. Leutenegger and D. Dias, “A modeling study of the
TPC-C benchmark”, ACM SIGMOD Record archive,
Volume 22 , Issue 2 (June 1993), pp22 - 31

[11] J. Pinkerton, “The case for RDMA”, available at
www.rdmaconsortium.org

[12] E. Rahm, “Concurrency and coherency control in
database sharing systems”, Technical Report 1993,
Institut fr Informatik, Leipzig Germany

[13] T. Shanley,Infiniband Network Architecture, Mind-
share Inc., 2002.



K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 12

[14] T. Shanley,The unabridged Pentium 4, Mindshare
Inc., 2004.

[15] G. Regnier, S. Makineni, et. al., ”TCP onloading for
data center servers”, Special issue of IEEE Computer
on Internet data centers, Nov 2004 (Eds. K. Kant &
P. Mohapatra).

Acknowledgements:Authors are grateful to Nrupal
Jani for running the simulation and generating data for
many of the cases included in this paper.


