Clustered DBMS Scalability under Unified Ethernet Fabric

Krishna Kant Amit Sahoo
Intel Corporation Univ. of California, Davis
Abstract tems. In particular, although there are studies of clustered

system scalability, they are mostly confined to either sci-
In this paper, we study the performance of clustered DBMtific computation (MPI based) or rather small clusters (8
running on-line transaction processing (OLTP) workloaglay). In this paper we provide such an analysis based on a
and using TCP/IP over Ethernet as a “unified fabric” falomprehensive simulation model and study the impact of
inter-process communication, iISCSI based storage accésisiic latency and network congestion on scalability.
and networking traffic. The study is primarily based on aThe primary focus of our study is a cluster using TCP/IP
comprehensive simulation model of such systems that wiger Ethernet as the “unified” clustering fabric, since we
have built. In particular, we study scalability, impact dbelieve that specialized fabrics such as IBA, Myrinet, QS-
fabric latency and effect of cross traffic on the DBMS pepet, etc, will remain niche due to huge installed based of
formance. We find that while the protocol overhead hast@p/|P/Ethernet systems. In particular, we consider the
large impact on performance, the end to end latency kagnario of a single high speed “pipe” coming into a server
comparatively lesser impact. We also find that interfegs aunified fabricthat carries all traffic types, which in this
ing high priority traffic from other applications can havease includes inter-process communication (IPC), iSCSI
a significant performance impact by delaying critical colbased storage, and normal client-server traffic. Such an ap-

trol messages. _ proach requires that the unified fabric work almost as well
K_ey words: Clustered database, TCP/IP, Quality of Segs isolated fabrics under stress conditions. Therefore, un-
vice, Latency Impact, Thread switching derstanding the behavior of the clustered application under

stress and other abnormal scenarios (e.g., under high la-

: tency) is of paramount importance. This paper attempts to

1 Introduction contribute to this understanding via a very detailed simula-
tion model of clustered OLTP server. Currently the model

In the e-business environment, mid-tier and backend §pstill weak in validation against measurements, which we
p|icati0nS have traditiona”y been implemented on SM%pe to rectify in Coming months; howeven we believe

(symmetric multiprocessors) because of their easier pfRany of the trends are captured accurately.
gramming model and efficient inter-process communica-

tion (IPC). However, SMP implementations have some se-

rious drawbacks including high cqst, inability to grow th? Cluster Architecture, Workload
system gradually as the need arises and poor scalability. .

The clustering model provides an attractive alternative to and I\/Iodellng

address these issues provided that SMP applications can

be ported without significant changes. The attractivendssthis section we briefly describe the modeled database
of clustering model is further aided by the emergence @fistering architecture, the workload driving it and how the
high bandwidth, low-latency cluster interconnect technolgimulation captures the essence of such systems.

gies such as Infiniband architecture (IBAB[and HW of- The main reason to consider clustered databases as a tar-
floaded TCP/IP over Etherné&t, [L5]. On the software side, get application is that such systems are already available
there are already solutions available for running appliceemmercially and represent an important class of appli-
tions without a painstaking manual partitioning in order tations from both storage and IPC traffic perspective. In
minimize inter-process communication (IPC). For examgentrast, front-end systems have no IPC traffic and low
ple in the database space, clustered systems such assforage use. Most mid-tier systems have very little IPC
acle 9i/10g have claimed that a good concurrency conttaffic and their performance is not very sensitive to IPC
model coupled with a distributed caching service can avdatencies. From a IPC latency perspective, clustered imple-
the need for database partitioniif)j.[However, there isn't mentation from the high-performance computing (HPC) is
much information available in the open literature on tropiite relevant, however, HPC workloads tend to be much
performance, scalability and stress behavior of such sysere specialized and the IPC needs can vary substantially

K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 2

from one implementation to anothd&j[versions, additional memory requirements, fatter IPC data
messages, and more disk 10O (due to less efficient memory

. . use).
2.1 Database Clustering Architecture The basic value proposition of cache fusion is that re-

Clustered DBMS implementations cover a wide range ffieving data out of the buffer cache of a remote node is
terms of coupling of various nodes. On one extreme, thsignificantly cheaper than reading it from the disk (even in
is the “shared nothing” approach, where each node has‘§€ of local disks). Thus, the overhead and end-to-end la-
own independent memory and 10 subsystem. In this ca§§1cy of IPC vs. that of disk 1O are crucial parameters for
the database must necessarily be partitioned among ndhegerformance and scalability of cache fusion based clus-
— either statically or dynamically. A more coupled aptered DBMS. It is well known that the traditional OS Ker-
proach is “shared 10” approach, where all nodes accesdgibased TCP/IP implementations are quite inefficiéht [
centralized 10 subsystem which holds the database. T¥Rvertheless, the corresponding IPC overheads and laten-
IO subsystem in this case is invariably a Fiber-chanrfdes are still considerably smaller than those for disk 10.
based SAN (system area network). An even more COU]US, one wqgld expect smallclustgrs to per.form well even
pled approach is essentially a NUMA approach where th#h the traditional “SW TCP” solutions. With HW TCP
node may also have access to a globally shared memoryfiRlementations, good scaling should be possible even for
addition to individual memories). Such a model begins fgther large clusters.
look like a SMP and is not considered in this paper. Cache fusion uses a directory based coherence scheme
The shared IO model has been adopted in Oracle 9i/#Dgt Proceeds as follows. Suppose that a nddexpe-
commercial DBMS and is attractive in that it does not rélences a miss on DB blocK' in its local buffer cache.
quire any partitioning effort in porting SMP applicationdiode A then determines (via a local table lookup) that
to clusters. However, since we are interested in Ether§8fne node, sag, holds the directory information for this
as a unified fabric which carries storage traffic as well, W&oCk. The sequence of actions is then as follows:

primarily consider the case of iISCSI (Internet SCSI) baseci_ A requests the blocK from nodeB. B looks up the

stqrage available at each ”‘?de- One attract_lon of Su_Ch a directory and returns positive or negative response to
“distributed storage” model is that it allows inexpensive

IO system at each node which expands naturally with the

cluster size. The partitioning scheme for this storage mode. In case of a negative responsé,obtains blockX

will be discussed later. In either case, however, we assume from the disk (local or remote).

a coordination mechanism similar to thache fusiorar- .) .

chitecture used by Oracle 9i/108]] 3. In case of a positive respoqs&,wa|ts to receive the
From a very high level perspective, Thache fusiorar- block from some nodé€” which is determined by3

chitecture essentially extends the cache-memory coordina- 2S the data supplie3 sends a message €4 andC’

tion in a SMP to the memory-disk coordination in a clus- r€Sponds tol directly with the block. (The last one is

ter. That is, each node has its private database memory 'PC data message, all others are control messages).

(usuall_y callecbuffer cachgand a shared secondary stor- 4 - 4 eventually informsB of successful retrieval so that

age. L|I§e the SMP, such a system needs acoherence proto- p can update the directory indicating also as the

col, which could also be MESI protocol used in SMPS (0r 4¢3 holder. (1fA had to evict a block from its buffer

some variant t_hereof)l@l]. 'Un'fortunately, such a prpto—. to accommodate the new one, it infornis of that

col would require substantial inter-process communication t00.)

(IPC) traffic to accomplish the necessary “snooping” and

“invalidation” of copies held by various nodes. Oracle’s Note that it is possible thal = B, or B = C; in these

mechanism, called RAC (real application cluster), attemmiases some operations become local and the corresponding

to avoid this overhead by exploitingulti-version concur- messaging is not needed.

rency control(MCC) [1]. The IPC data transfer is not limited to a single DB page —
The basic idea of MCC is to create a newrsionof the transfer size could range anywhere from 4KB to 64KB.

the table row (or a larger unit, depending on the grantihe optimal transfer size depends on a number of factors,

larity) each time it is updated. MCC avoids any “readand we do not attempt to adjust it for different runs of the

locks” since a transaction can always find the appropriatedel. Instead, we assume a basic IPC transfer size of 8

version of the data to read. Write/update accesses still K& (same as disk block size).

quire locking, however, there is no need for a traditionalOther than the block transfer and directory manage-

“invalidation”; instead, the concurrency control needs toent related IPC traffic, the scheme involves a number

ensure that only the most recent version is written to. Thé other IPC messages for such things as write lock ac-

price for MCC must be paid in terms of managing multiplguisition/release, transaction commits/aborts, naotification

K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 3

of block caching/evictions to the directory node, checklo not necessarily direct queries to the right sever. Instead,
pointing, directory migration, etc. These operations maye introduce the notion dffinity. An affinity of 1.0 corre-
result in a significant number of additional IPC messaggsonds to the case where a query always goes to the server

between nodes. that hosts the referenced warehouse. An affinitywof 1
means that the query goes to the right server with probabil-
22 Database Workload ity « and to a random server with probability— .

Given its popularity and availability of detailed

characterization data, the TPC-C benchmat?k3 Overview of Cluster simulation Model

(http://www.tpc.org/tpcc/default.asp) The simulation model called distributed cluster emulator
is a natural choice for an OLTP database workloabeLUE) was developed using the simulation package
TPC-C models operations of a wholesale parts supplispNET (vww.opnet.com). OPNET provides a fairly
operating out of a number of warehouses and their asggmplete emulation of the network infrastructure includ-
ciated sales districts. Each warehouse supplies 10 S@}I@S‘rcp’ IP, and Ethernet MAC layers, QoS support, com-
districts, and each district serves 3000 customers. Tf@rcial switches and routers, etc. DCLUE was built on top
database manages 100K parts in terms of orders, prigishe OPNET provided TPAL (transport adaptation layer)
stock level, etc. The workload has 5 transactions, nam@iich can support multiple transports underneath.
new-order (enter a new order which requests 10 parts ofine model implements cache fusion, multiversion con-
the average), payment, order status, delivery (procesgu?fency control, row/page locking, logging, disk 1O,
batch of ten'orders for delivery), and stock level UeVe'_Qfatabase tables, table operations, buffering, IPC han-
stocl_< of the items ordered b_y last 20 orders). The nomwa#ng, application processing, scheduling, thread switch-
fractions of these transactions are 43%, 43%, 5%, 5%' processor-memory data transfers, etc., often in
and 4% respectively. The performance metric reportedyainstaking detail. As a result, it requires a rather fine-
by TPC-C is the number of “new-orders” proces§® qrain model calibration. This is a problem in spite of
minuteand is expressed as tpm-C. _ . awealth of available measurement data on TPC-C, TCP

The benchmarl_< involves 9 tablewarehousez district, processing, iSCSI processing, etc. On the positive side
customer, stock, item, new-order, order, order-line and higgpwever,the model isn't dependent on high level results
tory. Of these, the first 5 tables are f|?<ed, but others a&yt would be easily invalidated by a change in system pa-
variable. New-order table grows & shrinks as new ordéfgmeters For example, the hit ratio in the buffer cache is
come in and are retired. The last 4 tables keep a permgr an input parameter; instead, it is a result of the actual
nent record of transactic_)nal operations and thus onlylgrquy,ncfer cache management done by the simulation. This
The benchmark is designed such thia¢ database sizeg|iows us complete freedom in choosing the cached frac-
increases linearly with the throughputn particular, the tions of various tables and their indices. Similarly, the
number of configured warehouses is approximately toPRumber of locks acquired per transaction, IPC messages
C/12.5. Sizes of all tables, except item, are multiples gbnt/received per transaction, log blocks written to the disk,
warehouses. The item table stays constant at 100K rogfgcks read from the disk, data versions created per block,
The largest tables are typically customer and stock aghtext switches per transaction, etc. all fall out of the
may require significant space for their indices. Althougdttyal functioning of the simulation rather than being arti-
the variable tables like order, order-line and history are alﬁaa”y provided as some inconsistent set of values.
quite large, access to them is quite localized. In spite of the detail, DCLUE obviously could not mimic

A notable characteristic of TPC-C transactions is thgteg| system at a fine grain level; the purpose of DCLUE is
they all refer to a single warehouse. In fact, accordiRg merely implement the most important functionality from
to the specification, a given “terminal” always generatgserformance perspective and thereby allow sensitivity
transactions with the same warehouse-id. This, couplgfldies. Some of the high-level functionality missing from
with the fact that most tables have #warehouses as a Ny UE are failure recovery and checkpointing since these
tiplier, makes TPC-C database trivially partitionable: agre not essential for our purposes. Nevertheless, given the
sign equal blocks of warehouses to each server and difglje| calibration based on actual measurement data, the
queries based on the warehouse. For this reason, TP¢syits provide valuable insights into the performance of
is usually considered an inappropriate workload for clugy Tp workloads on a cluster. In fact, the lack of idiosyn-
tering studies. We address this weakness by tweaking fhgsjes of specific implementations allow us to study true
workload behavior according to our needs. In particulafgaling characteristics of the cluster instead of being lim-
we still partition the database in blocks of warehouses, ity by the physical bottlenecks that invariably pop up in

1Actually, TPC-C allows new-orders to go up to 44% at the cost We_asuremem based studies.
delivery, but this may have some undesirable consequences. Figure!l shows the DCLUE network model. The net-

K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 4

ayterroutay

extra_client
= - >

client_3 client_2 client_1

Fig 1: A sample DCLUE model w/ 2 latas & 4 nodes per lata

work is organized as one or more “subclusters” which vege also adjusted to make them suitable for the data center.
call LATAs (borrowed from telecom). The subclusters arehe client-server TCP connections are established dynam-
connected via an “outer-router” (or an “outer-switch” ifcally on a per “business transaction” basis. A business
we only want layer 2 switching), at which the clients alstmansaction consists of the sequence of TPC-C transactions
home in. The used router model is a standard OPNET pstarting with the new-order in the proportions specified in
vided model and represents 3M Gigabit routers fairly wellectiori2.2.

Each subclustgr has its own router (or switch). Each servefhe complexity of the simulation model (about 12,000
has internal disk subsystems for normal 10 and logginghes of C-code) precludes a detailed discussion here; a
but not all of them may be used. In the distributed Storaggmewhat detailed description of many of its crucial as-
configuration, the disks are accessed remotely via is%%lcts may be found ir6[. Here we provide only a very

pr0t0C0| and via SCSI prOtOCOI |0ca.”y. In the Centralizeﬁigh level overview of some of these features.

(or SAN based) storage configuration, the set of all 10 SUbDCLUE basically builds the entire TPC-C database in the
systems forms a virtual SAN which is accessed via somy

. %mory and initializes it according to TPC-C rules. How-

unmodeled SAN fabric. ever, the information retained in the tables is only what

One of the objectives for the model is to study potentig) essential to interpret and execute queries, which means
ill' effects of running IPC and storage traffic on the norm@hat DCLUE can use the storage much more efficiently
Ethernet network that carries miscellaneous other typehile still retaining the precise row sizes, rows per block,
of traffic. For this, the model allows some extra clienistc. DCLUE also explicitly maintains Btree indices for
and servers to be added to the cluster (distinguished in #ah table. Since the entire database is sitting in the main
model by a different address range). These clients/serveksmory, buffer cache operations merely change status of
can run some additional applications and cause that tigde pages in question. Disk 10 operations are still simu-
fic to interfere with DBMS traffic on various links andated in terms of their latency amhth-lengthi.e., number
routers. For example, Fit shows the nodes marked “exof instructions required to execute an operation. Normal
tra_client” and “extraserver” whose traffic interferes withdisk 10 optimizations such as elevator algorithm are im-
regular DBMS traffic on inter-lata links. plemented on a per table basis. Although the disk writes

During initialization, each server establishes 2 TCP cofte lazy and could finish after the transaction is done, the
nections to every other server: one for IPC messages (dg@saction does not commit without writing a log. The
& control) and the other for iISCSI related traffic (coml©99ing is done on disks separate from those for normal
mand, status, data, etc.). The reason for separate conHee-
tion is to allow QoS studies that treat IPC and storage seCLUE implements fine-grain locking but dividing
arately. The TCP flavor used is Reno, SACK is enablgmhges into subpages. We found that we had to “tune”
and so is ECN. TCP timer values are reduced by 10@ke size of subpage for each table separately. In particu-
to make them suitable for data center operation. The la¥, the district table is accessed very frequently and need
ceive buffers are set at 64KB. Various router parametersmall subpage size. The locking mechanism itself in-

K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 5

volves 2 phases, where phase 1 performs “intention lot¢kreads). We exploited available data on Intel Pentium 4 to
ing” (or latching and brings in any missing data into thealibrate this aspect of the model.
buffer cachel12]. The phase 2 then actually attempts to
convert the latches into actual locks. Also, if a lock cannot
be acquired, a lock wait is performed on the firstlock inttd ~ Cluster Performance Studies
sequence, and later failures result in lock release followed
by a delayed retry. The scheme appears to work well everthis section we use the DCLUE model to obtain a num-
under high contention. ber of interesting results on scalability, latency sensitivity
The multiversion concurrency control was implementethd impact of cross traffic. As stated earlier, although stan-
using time-stamping mechanism and keeps track of miard TPC-C specification is exploited heavily in the imple-
imum version no, maximum version number and currementation and model calibration, we are interested in sce-
version no. Space for versions is allocated from an ovearios beyond basic TPC-C particularly in terms of the role
flow memory area. If this overflow area runs low, unpinneef IPC in clustered databases.
pages from the buffer cache are stolen to replenish it.
The apphcgtlon processing is |mplle_r.ne.nted in detalil f@.l Configurations and database scaling
each operation (e.g., transaction initiation, table opera-
tion, etc.) and so are message sends and receives.THB configurations that we considered are clusters of Intel
particular, application processing is interrupted to handbntium IV class dual-processor (DP) servers. For these
message receives. The calibration of varipath-lengths systems, unclustered TPC-C measurements and validated
was done based on the NASA report on TPCi(][and platform performance models were readily available and
current TPC-C measurements. The data related to ptats allowed detailed result validation at affinity of 1.0. In
form characteristics is taken from a long list of compreyarticular, our baseline server configuration is a 3.2GHz
hensive measurements available internally in Intel. Sip4 DP system with 1 MB second level cache, 133 MHz
ilarly, data related to 1O operations (e.g., accelerated agngs and 16GB of DDR-266 memory. One such node de-
non-accelerated TCP/IP, RDMA and iSCSI stacks) is takgyers about 50K (unclustered) tpm-C performance, which
from internal prototypes and measuremeidlslB, 8,14]. amounts to about 4K warehouse database. For the network
The most crucial aspect of the model is the modelimgfrastructure, we stuck with the current 1 Gb/s ethernet
of threads, thread switching, and its impact on procdiks and routers primarily because the current processors
sor caches. Basically, in a transactional workload, laterame unable to drive 10 Gb/s bandwidth except in large clus-
can be hidden by simply having more concurrent threadsrs. However, in a few cases, 10 Gb/s inter-lata links had
However, given the processor cache size and working setmbe used since 1 Gb/s links were becoming a bottleneck.
each thread, only so many threads can be accommodathd router models used are OPNET supplied 3M Gigabit
conveniently. With larger number of threads, the contesduters. Unless stated otherwise, we assume that both TCP
switch penalty rises very sharply and the cache beginsated iISCSI have been implemented in hardware in the fol-
thrash. Capturing this behavior was essential to propekbying.
model the impact of latency on performance. Fortunatelyunfortunately, a direct simulation of even a small clus-
we had available to us a very detailed characterizationtef will require long simulation times and huge amounts
this and other OS aspects under Redhat Linux 7.32DS [of memory. The need for- 4GB memory would re-
This along with internal studies on TPC-C working set sizgiire the complexity of reworking the simulation to use
provided us with the requisite modeling of the threads. PSE/AWE on a 32-bit machine. To avoid these problems,
The final aspect modeled in detail was the load on procege consistently scaled all relevant parameters by a factor
sor bus and memory channels and corresponding impaic00x. This means, for example, (1) Ethernet network
on CPU stalls. This again is essential for accurate madedel is 10baseT instead of 1000baseAE, (2) disk para-
eling of platform level performance. Fortunately, this imeters (seek, rotation, data transfer) are slowed down by
one area that is routinely studied in connection with pe-factor of 100, (3) CPU, bus and memory channel fre-
formance projections for various platform configuratiorguencies are cut down to 32MHz, 1.33MHz, and 1.33MHz
(e.g., seel]). Also, a lot of information exists based orrespectively, and (4) Various other delays such as chipset,
both measurements and cycle-accurate workload simuR-packet forwarding, context switch, interrupt handling,
tion of TPC-C. Yet, an accurate projection of MPI as etc. are also increased by a factor of 100x. In order to al-
function of affinity is challenging and is currently basebbw for a convenient scaling of all processing overheads,
on some heuristics. Address bus, data bus and memalfyinput parameters are expressed as “path-lengths” (i.e.,
channels are modeled as queuing systems and the resuwitaber of instructions required to accomplish the opera-
ing memory latency determines CPU stalls via the concéiain) or as or path-length equivalents. This ensures that a
of blocking factor(the fraction of latency visible to HW speed cut of CPU by 100x automatically scales everything

K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 6

by 100x. Finally, as for the database itself, a slow-down &ffinity. This is more clearly shown in Fig. The scal-
all platform and OS parameters will automatically redudeg goes down rapidly with decrease in affinity. Another
the throughput (and hence the number of warehouses)itportant point to note is that the performance sensitivity
100x —the only scaling required is for the item table, whidh high at high affinity values and decreases with the affin-
does not depend on number of warehouses. This is donétiyIn other words, tuning the system for small decreases
reducing the number of items from 100K to 1000. in affinity is more beneficial when the database is already
With the above scaling, it is possible to simulate reasonell partitioned.
able sized clusters. The results must be scaled back to cdn our experiments we considered 14-port
respond to the original system. routers/switches, which would be typical for a bladed
system. Therefore, for cluster larger than 12 nodes (i.e.,
16 and 24 node cases shown here), we had to move to a
2-lata scenario. This brings in the latency and queuing
Before launching into latency and traffic impacts, it is inimpacts of IPC traffic going across latas (through 2 extra
portant to first see how the cluster performance scales wittks and 2 extra routers). Consequently, there is a change
number of nodes. However, since scaling is the net rednislope around 12 nodes. However, it is important to note
of many complex activities in the system, we start by efhat the increasing lock failures and lock waits also play a
amining the latter first. One of most important aspects $tibstantial role in flattening out the scalability curve. In
this regard is the growth of IPC messages as a functi@gt, with affinity of 0.5 or less, the network effectively
of number of nodes. This is shown in Fig@and3 for stops scaling beyond 12 nodes. At 0.8 affinity, the scaling
0.8 and 0 affinity respectively. Each figure shows the IFgdecent and perhaps could be improved with faster links
control and data messages per transaction separately. aiérouters.
IPC messages are much smaller than data messages (abAtihigh affinities, the reason for continued scaling is the
250 bytes vs. more than 8KB) but significantly more niack of any shared bottlenecks in the system. In fact, most
merous. The interesting point to note is that the IPC mégsources increase linearly with the cluster size. For ex-
sage count rises sharply at first but then “saturates” ratlagnple, each new node adds not just CPUs, but also many
quickly. As a result, number of IPC messages very quickpfhers. These are: memory, memory channels, processor
cease to have any impact on scalability. In other words, bigs, normal and logging disks, and router links. If the net-
nonlinearly in performance is expected due number of IR®rk grows by adding more subnets, the stress on each
messages beyond small cluster sizes. inner-router also remains unchanged. Even the lock con-
Note that the figures do show some variability and ifention per page stays the same since TPC-C mandates that
consistency in the results. This is not so much a simulatithe¢ database size increase linearly with the throughput. At
error but more because of wide variations in transactitaw affinity values, although the MPI grows significantly,
characteristics as discussed more fullyéh [the low realized throughput in this case prevents bus from
Figures4 and5 show lock waits per transaction and lockecoming a bottleneck for moderate cluster sizes.
wait time as a function of number of nodes. The variabil-Poorer scaling properties can be observed if the linear
ity in the results is particularly pronounced here since bagiowth in resources is broken. As an example,-#ows
of these parameters are very much a function of prevailcase where the forwarding rate of the routers is reduced
ing conditions. Nevertheless, the trend is clear: Both loflom the normal 10000 packets/sec to 4000 packets/sec.
waits per transaction and average lock wait time increaBee scenario shown is for a single lata cluster. The rate
steadily with cluster size. The same holds for number ifduction causes the inner router to saturate beyond 8 con-
lock failures per transaction (not shown). In the absencensfcted servers and it limits the scaling too.
other effects, this aspect will limit the cluster scalability. Fig/9 shows another scenario, one where a single node
Let us now examine the scalability. FigiBeshows this is responsible for all logging operations. Normally, each
wrt cluster size and affinity as a parameter. The affininpde performs its own local logging operation. While this
1.0 case is shown just as a reference and correspondgietds good performance, it may make rollback very com-
the case of perfect scaling. As expected, the scaling gefex since the recovery procedure would have to obtain
progressively poorer as the affinity rises. However, the ilogs from all nodes, sort them by timestamp and then do
teresting part is an almost linear scaling from 2 or 3 nodé® rollback. Centralized logging makes recovery easier
to 10 nodes. For larger clusters, locking related issues start at the cost of potential bottleneck during normal oper-
to come into effect. Also, topological issues also come inabion. It is seen that the performance in this case is consis-
play. For very small (i.e., 2 or 3 node clusters), the behaently lower. Eventually as the node and local 10 subsys-
ior can also be different, and becomes more pronoundeth capacity is reached, the cluster will stop scaling.
with lower affinity. Fig!10 shows the impact of slower growth of DB size as
The slope of the scalability line strongly depends on tlefunction of throughput. For this we assumed that for up

3.2 Performance Scaling vs. Cluster Size

K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 7

Messages per Trans (0.8 affinity) Messages per Trans {0.0 affinity)
160
Z 1 mdata msgs 140 | ® data msgs
o0 1| Dcntrl msgs | w 120 L O chtrl msgs
@ &
g o N £ 100 +
g § &0
o - & 60
73 E 40
£
3 I 20
0 L =
2 3 G g 10 12 16 24
z : C?usler si1zDe & " “ Cluster size
Fig 2: IPC messages per trans for 0.8 affinity Fig 3: IPC messages per trans for 0 affinity
Lock Waits per Trans vs. Cluster Size Avy Lock Wait Time vs. Cluster Size
0.25 8 -
@ affinity 0.8 7 D affinity 0.8
» 0.2 1] af‘ﬁn!ty 0s E . lafﬁn?ty 0s
g O affinity O @ O affinity O
= &
20.15 E
%o 3
3 g3
E 4
Soos s 2
=1
0- 0
1 2 3 G g 10 12 16 24 3 G g 10
Cluster size Cluster size

Fig 4: Lock waits/trans vs. #nodes and affinities Fig 5: Lock wait time vs. #nodes and affinities

to 90K tpm-C, the database sizing is according to TPC-QG. Both TCP and iSCSI implemented entirely in SW.

rules (No of warehouses calculated assuming 12.5 tpm-C The SW TCP assumes single copy for sends and 2

per warehouse). However, beyond this, the growth rate of copies for receives.

warehouses goes a square root of the additional through-

put, rather than linearly. With this, the contention for the With affinity 1.0, there is no appreciable difference be-

data increases as the cluster size increases. Consequdm®en the 3 cases. This is because in this case there almost

the throughput no longer goes up linearly with the clustep IPC traffic (except for occasional access to item table

size. pages). Also, all disk accesses are local, so iISCSI doesn't
come into play at all. The only traffic that benefits from
TCP acceleration is client-server. Consequently, the HW

3.3 Protocol Overhead vs. Latency TCP performance is slightly better than SW TCP, but not

Compared with specialized fabrics, the traditional S\Ry rpuch._ .))

based TCP/IP suffers from two drawbacks: (a) signifi-Vith affinity 0.8, HW TCP provides almost twice as
cant overhead of code execution (and associated OS boffich throughput as SW TCP. This is because the lower
necks), and (b) significantly higher latency. It is importar‘i’t"erhead and latency of TCP substantially reduces both the

not to confuse the two. For example, a significantly bett&Prkload path-length and stall cycles. However, the differ-

performance achieved with specialized fabrics could wéfice between SWiSCSIand HWISCSlis marginal. Partly

be due to much lower overhead rather than the ultra-low [4iS iS due to the fact that disk 1O rate is small (since most

tency. Fig/11 compares the performance of the following@t@ comes from other buffer caches). Also, iSCSIimple-
3 cases for various affinities: mentation path-lengths are small except for the rather large

overhead of CRC calculationd][

1. Both TCP fast path and iSCSI implemented in HW. Finally, with affinity 0.5, the difference between HW and
This is the normal case considered for most of o&W TCP is even wider, but not by much. This result may
experiments. For this, detailed TCP and iSCSI parae surprising since the number of messages per transaction

meters were obtained from current offload prototypedpes increase significantly from 0.8 to 0.5 (from 21 control
messages per transaction to about 54). However, with 0.5

2. TCP fast path in HW but iISCSI implemented in SWaffinity the major expense in completing a transaction is

K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 8

i Tput vs. Cluster Size/ Affinity Tput vs. Affinity’ Cluster Size
- 17
15 H —O—Afﬁn!ty 0.8 = —&—FEx topology
l —m— Affinity 0.5 B s 1o topology
12 H Adfinity 0.0 _1aq 32 topology
g, Affinity 1.0 R 833 topalogy
= d*_____,g-————j -
E = 7 =
b — = -
’
21— j— It —igé—‘é
04 T T T T | 1 s
1 5 e 13 17 2 0 02 0.4 0g 08 1
Cluster Size affinity
Fig 6: Scaling vs. nodes and affinity Fig 7: Scaling vs affinity and nodes
Effect of Slow Router {0.8 affinity) Effect of Centralized Logging {0.8 affinity)
g g
7 4 —a— Base Case 7 1 —&— Base Case
—m— Limited by Router 1| —m— Cantralized loggin
! B gging
T e e T P E—
g = P
= 4 — . | =4
55 ‘g_ 3 g//./r
= = /
2 2
1 T"/./ 1 ?‘f"/
0 : : : a T T T
0 4 5 12 16 a 4 B 12 16
Cluster Size Cluster Size

Fig 8: Impact of router forwarding rate on scalability Fig 9: Impact of single node logging on scalability

due to lock failures and corresponding path-length increatsday with HW TCP can easily be brought down to 10-20
and CPU stalls. The TCP/IP overhead thus has proportiois-
ately smaller impact. We ran the experiment for 0.5 affinity (in addition to 0.8)
Next we consider the latency impact. High latency tohoping to see higher latency sensitivity for this case be-
erance would allow a less expensive implementation agalise of much higher IPC messages per transaction. Sur-
even geographically distributed clusters. We study the iprisingly, however, the sensitivity is the same in both cases.
pact of latency by simply adjusting link lengths to achievehis result is a result of worse threading behavior for 0.5
the desired extra latency. It is important to note that thadfinity and is discussed more fully in the next subsection.
type of latency introduction is quite different from laten- One reason for low sensitivity of TPC-C to latency is
cies within the platform (e.g., greater memory access It huge computational component as indicated by a path-
tency or context switch latency) which cause direct CAength of 1.5M for the unclustered case, of which only
stalls. In a transactional workload, the true impact of labout 15% is related to disk 0. Other OLTP workloads are
tency is felt only when the latency cannot be hidden Isjgnificantly lighter on computation and thus could have
employing additional threads; therefore, we do not plab&@her sensitivity to latency. To investigate this, we sim-
any bound on the number of threads used. Fidg2rehows ply reduced all computational path lengths by a factor of
performance of a 2 lata system where each of the two intérand the resulting situation is designatedoas computa-
lata links includes one-half of the additional latency showtion’. (A more realistic method would be to actually make
The two curves are for 0.8 and 0.5 affinity respectively. thhe queries more light-weight, but that requires lot more
is seen that in both cases, a 1 ms additional delay reseffort.) Figure13 shows that the change indeed makes the
in about 3.4% performance drop, whereas a 2 ms delayarkload lot more latency sensitive. In particular, 1 ms ad-
causes a 6% performance drop. These latencies shouldibenal latency now results in 10.4% drop in performance.
viewed in the context of 1 Gb/sec link. If we were to con- The results above show that the latency sensitivity is low
sider systems capable of driving 10 Gb/sec bandwidth, eeough that there is no need for designing ultra-low la-
might expect similar drops with 1/10th as much latendgncy TCP/IP offload or router and switchéaurthermore,
That is, we could expect a 1Q0; latency to drop the per-if the database characteristics are like TPC-C, it should
formance by a few percentage points. This is a rather Ib@ possible to geographically separate the subclusters (or
sensitivity considering the fact that the normal end-to-etata’s) on the scale of MAN distances. For example, if we

K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 9

ILrveear s, S D13 e (s Protocol Offload Comparison
7
45
s l| —e—Sqrt growth A 44 1 1
. —m— Linear growth / 348 | |
- w 3 4
i, :/ — £ 25 4 mAffinity 1.0
i .//./ £ mAfinity 0.8
s 215 — i
) E -1 | B OAffinity 0.5
‘ ./r/ 0.5 - —
1 =l 0 T T
8 SV top & SV HW tcp & SWV HWY top 8 HYW
o 2 4 5 & 12 12 1 iscsi iscsi iscsi
cluster size
Fig 10: Impact of slower growth in DB size Fig 11: Impact of TCP and iSCSI offload
Tput vs. Latency {(Normal Computation) . Tput vs. Latency (Low Computation)
45
Ai:lzt—‘\.\.% 5
35 -
L= B4
éa.s- é .
- 2 = -
E, 15 E.e
Tl m Tput 0.8 affinity) g
- put (2. Y i —m— Tput (0.8 affinity)
T Tput (0.5 affinity) T '
B . put (0.5 affinity)
e 2 Latent:y Im=) B & " 2 Latencl:‘y [m=] i |

Fig 12: Latency impact: normal comp, 0.5 & 0.8 affinity Fig 13: Latency impact: low comp, 0.5 & 0.8 affinity

have two subclusters with one of them located 50 milegerfering traffic, and weren’t overly concerned with
away, the additional 1 ms RTT increase will lower thmaintaining a real-life file size distribution. In fact, as
performance by only a few percent on systems drivingndight be expected, setting the the file sizes too large would
Gb/sec bandwidth. punish the FTP connection severely in case of congestion,
and thus the traffic will not be able to wound the DBMS
traffic that much. On the other hand, with very small trans-
3.4 QoS Impact fers, FTP spends most of its effort in setting up/tearing

In this section, we examine how the IPC and storage trgfgwn, connections and therefore is'f],t a good interferenpe
fic is affected by other interfering traffic on the networl&f"md'd?t?' Consequently, we ‘?'ec'ded to make FTP file
The results presented here are for the case where the x> Similar to DBMS transfer sizes. DBMS control mes-
clients/servers run FTP traffic with 50% GETs and 50939€S are in 250 byte range and data messages are 8 KB
PUTs. As usual, the FTP application sets up new Té)[gla_rger (the larger part comes because of additional ver-
connection for each transfer. This makes the interferiﬁt?nmg data).
traffic more “stubborn” than the IPC traffic which uses The scenario studied consisted of two latas, each with 4
a static connection. In particular, under overload condiodes and an affinity of 0.8. We considered both normal
tions IPC connection may get reset and may have to be@gd low computation cases (see last subsection) for this.
established. Since connection re-establishment involvek &he normal computation case, the combined DBMS traf-
lot of overhead and lost traffic, we have avoided this sfic on the inter-lata links was about 650 Mb/sec and for
uation by artificia"y bumpmg up the maximum retranéOW Computation case, the traffic is about 920 Mb/sec. The
mission count to rather high values. While this may nétoss traffic (FTP) was varied from 0 Mb/sec to 600 Mb/sec
be realistic, we were interested primarily in the effect ¢ both cases. Itimportant to note here that¢beriedtraf-
cross-traffic as opposed to abnormal conditions createdfigyfrom both DBMS and FTP domains will depend on the
it. Clearly, some admission control scheme needs to benierference and QoS setup — the numbers here merely re-
place to ensure that unlimited amount of traffic doesn't géf to offeredtraffic in isolation.
into the network and cause connection resets. With respect to QoS setup, we were primarily interested
We note here that we used FTP traffic here as a genénidiff-serv, since int-serv may not be implemented or even

K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 10

Tput vs. CrossTraffic (Normal Computation)
S
N——g g - - —
-5
1]
E =
é 25
-]
215+
= oL | —®—Tput (Best effort]
05— Taut (High pricrity)
’] A 0.2 0.3 0.4 0. 0.6 or
Traffic (Gh/sec)

Tput vs. CrossTraffic (Low Computation)
BFY

.

@

=

n

Tput (K-tps)

—m— Tput (Best effort)
Tput (High priority)

(=]

=}

o1 0z 0.3 04 0s 06 o7
Traffic [GiWsec)

Fig 14: Impact of cross traffic w/ normal computation

Fig 15: Impact of cross traffic w/ low computation

necessary. The diff-serv space itself is huge and include 4 diff-serv for business reasons or because they demand

different mechanisms:

1. Queuing schemes (priority, WFQ, ...)

2. Packet drop schemes (tail drop, WRED, FRED, ...

3. Traffic Policing/shaping (e.qg., leaky bucket)

4. Connection admission control (CAC)

Affinity and Cross Traffic Impact

=

wmo oo

—— Tput(0.5 affinity)
—m— Tput(D.5 affinity)

Tput [K—tp=]

- ™

=

o i e nE 0.4 nE nE

Traffic [Gbisec)

Fig 16: Impact of cross traffic w/ low computation

good treatment. Admittedly, FTP isn’'t a good exam-
ple of such a traffic, but for the purposes interference
study, it probably doesn’t matter.

In OPNET’s default implementation, a higher AF num-
ber really translates into a larger queue (and hence a lower
drop probability) and priority treatment. Note that since
the two traffics don’t share a client or server, priority treat-
ment is confined only to the router. Thus, unless the router
itself is congested, the priority queuing will not shut out the
lower priority traffic under overload. The routers use sim-
ple tail-drop (instead of RED, WRED, etc.) and no con-
nection admission control, policing or shaping policies are
employed.

Fig 14 shows the results for normal computation for the
two QoS arrangements. It is seen that with both traffics as
best-effort, interfering traffic does not make any significant
impact on performance. Instead, the performance goes
down marginally and at a slower rate as the traffic goes
up (until the link really saturates). The explanation is that
both DBMS and FTP traffics suffer due to competition and
back off. For the DBMS traffic, this simply means a longer
wait for the threads and hence more active threads. So long
as the thread wait is small enough for the request/response

Each of these mechanisms involves numerous algorithfgget through, the performance is not adversely affected.
and tuning parameters thereby making QoS setup a nighfyjith FTP traffic given a higher priority, the impact is
mare. In view of this, we concentrate only on rather sif§5,ch more pronounced — a 30% drop in DBMS through-
plistic scenarios because they are most likely to be foupgs \with only 100 Mb/sec of FTP traffic. The large drop
within the data center. In particular, we report results Qs found to be a result of increased queuing delay not

only the following two cases:

1. Both traffic types are obest efforttype. This can be
described as the “lazy” approach, where the admi
istrator makes no effort to exploit diff-serv mech

nisms.

a

only at the links but also at the router, whose impact is
enhanced due to priority handling of FTP traffic. In par-

lii]c_ular, critical IPC control messages such as lock acquire

and release are delayed substantially while the FTP traffic
Is establishing/tearing down connections or is transmitting
its data. It was found that not only the message delays al-

2. DBMS traffic is best effort but the FTP traffic is asmost doubled, the lock wait time also went up substantially
signed the DSCP AF21. This scenario was motivaté@m about 2 ms to 10 ms.
by the usual situation where most of the traffic runsSurprisingly however, most of the drop happens initially
as best effort, but certain limited types of traffic usenly; with higher FTP traffic, the performance still goes

K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric 11

down by much more slowly. The reason for this phenondersely affect the DBMS performance so long as all traffic
enon has to do with caching and context switch behaviorisfdefaulted to be best effort or the interfering traffic is at
the DBMS traffic. The 100 Mb/sec interfering traffic doua lower priority. However, when competing with higher
bles delays for DBMS IPC traffic, which in turn requiregriority traffic, a substantial increase in queuing delays
more active threads to keep the CPU busy. In factatire of crucial IPC messages such as lock acquisition/release
eragenumber of active threads jumps from about 20 to 78ould result in significant performance loss. Thus it is im-
More threads, however, result in more competition for thmrtant to examine QoS schemes that can minimize inter-
processor cache since each time a thread is scheduleapfilication interference and yet provide a good perfor-
needs to bring in its working set. Consequently, the averance for all. Moreover, to be really useful this should be
age context switching cost skyrockets — from 17.7K CPdbne almost autonomically without the data center admin-
cycles to 69.7K CPU cycles. The result is a significargtrator doing manual setups based on detailed workload
increase in CPU stalls, which increases the CPI (cyclasowledge.
per instruction) from 11.5 to 16.9 although the path-length
does not change much. A larger cross traffic does increase
the number of active threads further; however, with cacﬁeferenCes
already almost thrashing, it is harder to afflict significant .))
additional damage. [1] P.A. Bernstein and N. Goodman, “Mul_tlvers,l,on con-
Figl15 shows the results for low computation for the two currency control — theory and algorithms”, ACM
QoS arrangements. As expected, the effect of cross traffic Trans on Database Systems ., 8(4):465-483, Decem-
is more pronounced in this case. In particular, with both ber 1983.))
traffic as best effort, the throughput drops from 6 K-tps td2] P- Deng, “Telecom Linux performance evaluation”,
5.2 K-tps due to 100 Mb/sec cross traffic, a 13% drop. With Intel measurement and evaluation report, Aug 2002.
high priority traffic, the drop is very severe — down to 3.4[3] R. Dimitrov and A. Skjellum, “Impact of latency on
K-tps, or a 43% drop. The greater sensitivity is obviously ~ application performance”, Proc. of 4th MPI devel-
due to greater dependence of transactions on getting their oper & user conference, Ithaca, NY, March 2000.
IPCs completed in a timely manner. [4] A. Joglekar, “iISCSI Technology Investigation”, Intel
Fig [16 shows the impact of affinity on performance in measurement and evaluation report, Nov 2004.
the presence of cross traffic. For this, we have chosen t§] K. Kant, “An Evaluation of Memory Compression
low computation case. Since lower affinity leads to more Alternatives”, Proc. of CAECW (Computer Architec-
IPC messages per transaction, we might have expected the ture Evaluation using Commercial Workloads), Feb
sensitivity toincreaseas the affinity goes down. In fact, 2003, Anaheim, CA.
the result is just the opposite. The reason for the appafg] K. Kant, A. Sahoo and N. Jani, “DCLUE:

ent anomaly is that lower affinity already requires more A Distributed Cluster Emulator’, available at
threads to keep the CPU busy (because of more commu- pity:/amww.ccwebhost.com/DCLUE.

nication). Thus further delays due to interference do n(t7
degrade the cache performance quite as much. Also, on 4
the cache is on the verge of thrashing, further delays have
little chance of degrading the performance further.

K. Kant, “TCP offload performance for front-end
servers”, Proc. of GLOBECOM 2003, Dec 2003, San
Francisco, CA.

[8] S.R. King and F.L. Berry, "Software RDMA over
TCP/IP on a general purpose CPU", submitted for
publication.

[9] T. Lahiri, V. Srihari, et. al., “Cach Fusion: Extending

. . shared disk clusters with shared caches”, Proc. 27th
In this paper, we studied the performance of clustered f R ltaly 2001
OLTP workloads as a function of a variety of parameters VLDB conference, ome, “y .
with TCP/IP over Ethernet as a unified fabric. The malt9] S: Leuteneggerancjl D. Dias, "A modeling study of the
result of the modeling appears to be that OLTP workloads - C-C benchmark”, ACM SIGMOD Record archive,
are more sensitive to protocol overhead rather than pure Yolume 22, Issue 2 (June 1993), pp22 - 31
end to end latency. The latency sensitivity obviously deL1] J. Pinkerton, “The case for RDMA', available at
pends on computation vs. communication, and may be Www.rdmaconsortium.org
higher for OLTP workloads that are less computationall§2] E. Rahm, “Concurrency and coherency control in
intensive than TPC-C; however, the sensitivity appears low database sharing systems”, Technical Report 1993,
enough that they may not benefit frdoadedend-to-end Institut fr Informatik, Leipzig Germany
latencies under a few tens of microseconds at 10 Gb/sef13] T. Shanley,Infiniband Network ArchitectureMind-

In terms of QoS issues, interfering traffic does not ad- share Inc., 2002.

4 Conclusions and Future Work

K. Kant & A. Sahoo: Clustered DBMS Scalability under Unified Ethernet Fabric

[14] T. Shanley,The unabridged Pentium, Mindshare
Inc., 2004.

[15] G. Regnier, S. Makineni, et. al., "TCP onloading for
data center servers”, Special issue of IEEE Computer
on Internet data centers, Nov 2004 (Eds. K. Kant &
P. Mohapatra).

Acknowledgements: Authors are grateful to Nrupal
Jani for running the simulation and generating data for
many of the cases included in this paper.

12

