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Enhancing Vision Language Models with Logic
Reasoning for Situational Awareness

Pavana Pradeep Kumar1, Krishna Kant1 and Suya You2

Abstract—Vision Language Models (VLMs) can provide lucid
high-level descriptions of complex activities from images and
videos and thus form a powerful tool for situational aware-
ness (SA) applications where we are primarily interested in
unusual/anomalous events. Therefore, the SA applications require
high reliability in recognizing such events, even though they
typically have limited training instances. Furthermore, we also
need a means to indicate the quality of the result. In this paper,
we integrate VLMs with traditional computer vision techniques
through the use of explicit logic reasoning to enhance situational
awareness: (a) a mechanism to intelligently select inputs for
fine-tuning of VLMs for infrequent events without requiring
labeled data, (b) An intelligent fine-tuning mechanism that yields
much better accuracy than an uninformed selection, and (c)
a mechanism to produce justification of VLM output during
the inferencing phase. We demonstrate that our intelligent fine-
tuning mechanism improves the accuracy and provides a valuable
means, during inferencing, to either confirm the validity of the
VLM output or indicate why it may be questionable.

Impact Statement—This paper applies emerging Vision Lan-
guage Models (VLMs) for vision-based situational awareness in
cyber-physical environments, focusing on safety, security, and
policy compliance. While VLMs offer high-level descriptions of
infrequent but critical events, traditional computer vision (TCV)
methods better capture finer details like people, objects, locations,
and movements. We explore integrating VLM and TCV through
logical reasoning to enhance situational awareness, improve fine-
tuning efficiency, and ensure output reliability. Fine-tuning VLMs
can be costly, especially for infrequent events. We propose a
technique that not only makes the fine-tuning efficient but also
offers a way for sanity checking of the outputs during inferencing.
The latter ensures enhanced reliability in recognizing crucial
events, which is critical in the situational awareness context.

Index Terms—Multimodal Language Models, Logical Rea-
soning, Anomalous Activity Detection, Video-based Monitoring,
Situational Awareness

I. INTRODUCTION

With video-based monitoring of various cyber-physical
systems becoming ubiquitous, a crucial need is to perform
automated situational understanding using the streaming data
from the deployed video cameras and possibly other sensors.
The essential purpose of such a mechanism is to recognize
situations that may be anomalous in some way. Typically, these
concerns include safety, security, policy violations, or other
unusual events. For example, in traffic monitoring on the road,
it may be desirable to detect accidents, near-accidents, criminal
activities using vehicles, etc. These situations are less common
than normal traffic but of primary interest in monitoring. We
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assume throughout this paper that the specific activities/events
of interest for a given situational awareness application are
known (or can be learned) and can be characterized at least
approximately. We henceforth denote the set of these “main”
activities as Am.1

Vision Language Models (VLMs) have recently burst onto
the scene with impressive abilities to summarize the content
of an image or short video at an advanced level. Most VLMs
use a Large Language Model (LLM) backend, which enables
them to engage in a Q&A capability and lucid descriptions of
what is happening in the image/video. These descriptions go
well beyond what is reasonably achievable using Traditional
Computer Vision (TCV) techniques [50]. Here, TCV means
deep learning networks such as CNNs specifically designed
and trained for purposes like recognizing objects, object at-
tributes, specific actions, etc.

However, the TCV techniques remain important and can
be exploited in multiple ways, especially in a situational
awareness context. First, in addition to a high-level description
given by VLMs for activities in the set Am, we also want
to know the finer details, such as the relative locations and
movements of people and machinery for each important ac-
tivity/event. Fine details can be easily obtained by recognizing
objects and their poses/attributes via TCV techniques and
tracking their locations/movements from frame to frame. Such
details are difficult to obtain directly from the VLM. Thus,
an integration of VLM and TCV can provide both the high-
level context/activities and the low-level details associated with
Am. The “glue” in this integration is the logical reasoning
techniques that can run very efficiently in real-time.

The second way to exploit TCV is in fine-tuning the
VLMs, which is essential to achieve good performance for
the desired set Am [11]. The accuracy of an out-of-the-box
VLM could vary widely across the activities in Am, and it is
important to intelligently select the images/videos for fine-
tuning containing activities where the VLM is performing
poorly. One reason for doing this is the rather high resource
requirements for fine-tuning VLMs. The second reason is that
the activities in Am typically occur infrequently. Thus, it is
important to (a) identify video segments containing activities
from Am quickly and automatically, even if the identification
is only approximate, and (b) evaluate the subset of A where
the VLM is performing poorly before proceeding with the
task of labeling video segments and using them for further
fine-tuning.

1The reason for using the word “main” and the superscript m shall be clear
shortly.



For (a), we exploit TCV, which typically can go through
large amounts of data quickly to identify the segments for
selection. The idea is to identify a set of proxy activities,
say Ap, that can approximately capture the activities in Am

but are simple enough to be recognized easily by TCV. This
identification can itself be automated, as we discuss later. For
(b), we identify an auxiliary activity set Aa, which contains
a variant of every activity in Am. Thus, we shall make use
of two VLMs, a main VLM (VLMm) and an auxiliary VLM
(VLMa). Inconsistencies between the outputs of these VLMs
or with the proxy activity recognition can then pinpoint the
need for further fine-tuning.

While the use of an additional VLM may appear to add
substantial overhead to fine-tuning, we demonstrate that it
still outperforms the uninformed fine-tuning. Furthermore, it
provides two other key advantages: (a) The evaluation is now
based on consistency rather than accuracy and hence does not
need labeled video segments, and (b) we can continue to use
the mechanism during the inferencing phase as well and thus
have a strong, strong justification mechanism. Both are very
significant advantages in situational awareness because while
the events in Am may be infrequent/rare, recognizing them
correctly is crucial. Again, logical reasoning plays a key role
in enabling these functionalities.

To the best of our knowledge, this is the first work of its
type to integrate explicit logic reasoning with VLM and TCV
to make three substantial contributions in the context of VLM-
based situational awareness: (a) a mechanism to intelligently
select inputs for fine-tuning of VLMs for infrequent events
without requiring labeled data, (b) An intelligent fine-tuning
mechanism that yields much better accuracy than an unin-
formed selection even when the length of the fine-tuning period
is kept the same, and (c) a mechanism to produce justification
of VLM output during the inferencing phase.

As VLMs become mainstream and are further optimized
for speed (e.g., Video-Mamba), the techniques proposed in
this paper and their further enhancements will be crucial to
using VLMs in real-time situational awareness applications
confidently.

The rest of this paper is organized as follows. Section II
presents the detailed design of our directed fine-tuning mech-
anism. Section IV discusses the experimental assessment of
the mechanism. Section VI discusses the related work. Finally,
section VII concludes the discussion.

II. PROPOSED FRAMEWORK

A. Tasks and Activities

As stated in the last section, we target the recognition
of a set of main activities Am for the desired application,
collectively referred to as the Main task or Tm. We assume
that we have I targeted activities, i.e., Am=(Am

1 ,...,A
m
I ). We

also have the Auxiliary task, or T a with Aa=(Aa
1 ,...,A

a
I ), with

1-to-1 correspondence between Am
i and Aa

i ’s. We discuss later
in section III-A how to automatically derive Aa

i from Am
i . We

also have our main and auxiliary VLMs, VLMm and VLMa,
to recognize Am

i and Aa
i respectively as belonging to “class”

i. It is certainly possible to use the power of LLMs to go

beyond a direct class-based output from VLMs, but we leave
that to future work.

Task type Defined via
Main Task Main activity set (Am={Am

i ,i=1..I)
Auxiliary Task Auxiliary activity set (Aa={Aa

i ,i=1..I)
Proxy Task Proxy activity set (Ap={Ap

k,k=1..K)

TABLE I: Task and Activities

We also introduce the proxy task, denoted as T p that
recognizes the proxy activity set Ap=(Ap

1,...,A
p
K) for some

K>1. Proxy activities are defined as simpler components of
main/auxiliary activities that can be recognized by standard
object recognition or related algorithms. Table I summarizes
this terminology for easy reference.

B. Defining and Exploiting Proxy Activities

Fig. 1: Task and Activity Relationship

Fig. 1 further de-
picts the relation-
ship between tasks
and activities. Al-
though this figure
refers to the main
task, a similar de-
scription will apply
to the auxiliary task
as well. It shows
that task Tm consists of activities Am

i , each of which is
associated with some proxy activities, henceforth denoted
as Smi (Ap). For example, Am

2 has three associated proxy
activities Ap

1..A
p
3.

We now place the requirement that Am
i =⇒ Smi (Ap). Here,

=⇒ means that if the activity Am
i is observed, all of the

(simpler) activities in the set Smi (Ap) should also be observed.
That is, the set Smi (Ap) is necessary for Am

i to occur but
may not be sufficient. The exposition here is informal; in
actual implementation, such requirements and the underlying
activities are represented as logic assertions as discussed later.

The intent is to use TCV to recognize Smi (Ap) and exploit
the one-way implication as a weak but efficient consistency
check with the VLM output. For TCV, we use standard
algorithms such as YOLO variants to detect objects/poses,
potentially augmented with additional neck/head layers for
recognizing additional attributes if needed [21]. Any move-
ment tracking can be done by frame-to-frame monitoring
of objects, perspective transformations, and reasoning about
the locations/movements of objects. In particular, if a per-
son/machine disappears from view temporarily and returns, we
can track it easily and accurately in most cases. For simplicity,
we also use the same set of proxy activities for the auxiliary
VLM. That is, Aa

j =⇒ Saj (Ap), where Saj (Ap) is some non-
null subset of Ap.

It is important to note that we do not need to assume that
TCV recognition is always correct since we are only looking
for consistency between TCV and VLM outputs. By their
simplicity and mature/focused TCV recognition algorithms,
we expect the proxy actions to be recognized quite accurately.
Furthermore, with more effort, we can catch mistakes by TCV
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algorithms by exploiting the key properties of consistency and
smoothness of objects and actions across frames. Such prop-
erties, too, can be easily formulated using logical reasoning,
although we do not pursue this line in this paper.

C. Consistency Driven Fine-tuning

Given the setup above, we can design an algorithm to pro-
cess the video frames through VLMm, VLMa, and TCV, and
determine, via spatio-temporal logic reasoning (a) Whether the
VLMm output class, say i is same as the VLMa output class,
say i′, (b) Whether all the activities in the set Smi (Ap) are
observed and (c) Whether all the activities in the set Sai′(Ap)
are also observed. If any of these consistency conditions do
not hold, we conduct an intelligent or directed selection of
(or “inputs”) for further fine-tuning of the VLMm and VLMa.

The process can be repeated in a loop until the fine-tuning
performance saturates or is terminated for other reasons (e.g.,
running out of fine-tuning data). We henceforth call the data
used to evaluate fine-tuning needs as evaluation data or simply
eval-data. Note that our evaluation is purely consistency-
driven and does not need labeled data. We shall contrast
this with the traditional accuracy driven evaluation, which
does need labeled data. We show that the consistency-driven
evaluation is on par with the accuracy-driven evaluation and
thus can be used easily to judge if further fine-tuning is needed
as the environment evolves.

D. Justifying Inferences

Because of the inherent inaccuracies in any automated video
processing, a real-world deployment must justify the output or
indicate when the output might be unreliable. The proposed
consistency-driven fine-tuning mechanism can be adapted to
this role by simply continuing the consistency checks during
the inference phase. In this case, we could run the two VLMs
in parallel on two different GPUs, if available, or forego
VLMa during inferencing and thus weaken the validation. A
third choice is to use VLMa only for “difficult scenarios”.
Such scenarios can be learned from the history of observed
inconsistencies, but we do not pursue that aspect here. We
later quantify the overhead of justification, which should be
possible to do in real time with improvements in hardware
speeds.

III. IMPLEMENTING DIRECTED FINE TUNING

A. Identifying Proxy and Auxiliary Activities

In this section, we discuss the issue of automated identi-
fication of suitable proxy and auxiliary activities related to a
primary activity. We start with proxy activities, where we need
repertories of generic and easily recognized activities/events
relevant to the application. In most cases, these include spatial
relationships, poses/pose-transitions of people, everyday ac-
tions for people and robots like walking, sitting, raising arms,
etc., relevant movements of machinery, and others. The TCV
algorithm and direct frame processing should be capable of
recognizing all such activities in the repertoire. For example,
the object detector recognizes two objects (e.g., a pedestrian

and a car). In contrast, the distance between them, speed,
direction of movement, etc., can determined by a direct frame
analysis, assuming that the camera position is known.

We next automatically determine the mapping SI(Ap) for
each Ai, i.e., the set of proxy activities implied by the VLM
recognized activity Ai. (We have omitted the superscript m or
a since the same procedure applies to both.) First, we express
every proxy activity Ap as a logic assertion, say ψAp . Let D
denote the entire input dataset available for fine-tuning. This
would be a labeled set of short video segments (or images, if
image-based VLM is used.) Then, for each class i, we pass
each input through TCV and identify which assertions in ψAp

hold for it. In the last step, for each class i, we pick the
assertions that hold in most (e.g., 90%) cases.2 This set then
characterizes the set Si for each i.

TABLE II: Description of Scores

Average measure of perfor-
mance

Score

Correctness score 4.09
Detailed orientation score 3.91
Contextual understanding score 3.97
Temporal understanding score 4.01
Consistency score 4.02

To obtain the auxil-
iary activity Aa

i corre-
sponding to the given
Am

i , we can exploit
the VLM technology
by asking for an alter-
nate description of the
activity. For indepen-
dence, using a differ-
ent VLM such as Video-chatGPT [29] is useful. The important
point is to (a) accept only descriptions for which the identified
set of proxy activities and (b) ensure that the meaning of
the generated variant Aa

i is closely aligned with that of the
original Am

i . This can be checked easily using the mechanism
in [29], which provides several measures to determine how
well the two meanings are aligned (using a scale of 0-5).
The scores include correctness, consistency across different
responses, contextual understanding, and understanding of
temporal changes. Only the first two are really relevant to our
case.

Table II shows the results of these scores describing how
close the VLM generated auxiliary activity, Aa

i , is closely
aligned with that of the original Am

i . It is clear from the results
that the VLMm and VLMa activities are very well aligned (a
score of 4.0 or higher is considered to be very good [29]).

B. Using Explicit Logic Reasoning

Explicit logic reasoning has been used successfully in
numerous domains [1] and contexts [32]–[35]. The most basic
use is first-order logic extended with additional “theories” to
reason about relevant topics such as integer/real arithmetic,
motion (e.g., Newton’s laws), spatial relationships, etc. The
reasoning can be done by highly popular Satisfiability Modulo
Theory (SMT) based tools such as Z3 [30] and YICES [12],
which can routinely solve substantial practical problems. The
three crucial parts in an SMT model are (a) Rules of Inference
(RoIs), (b) Various feasibility constraints (e.g., walking speed
<2 m/s), and (c) Groundings or facts determined from the
environment (e.g., by analysis of objects in individual frames

2It is also possible to consider the strength of the assertion in the form of
weight, but we have not done so in this paper for simplicity.
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along with perspective correction). We can also define higher-
level concepts as reusable functions suitable in the “logic
program”. For example, consider the function “following(V1,
V2)” that asserts that car V1 is following car V2. This can
be defined as the relative separation between V1 and V2 in
a sequence of frames. It is even possible to establish the
truth value of such a function directly via machine learning
techniques.

Although SMT-based reasoning is adequate for this paper,
explicit logic reasoning demonstrates its adaptability by han-
dling more complex situations involving temporal ordering
or real-time aspects. This adaptability is showcased through
numerous extensions such as [4], [7], [9], [17], [40] as used
in [32], [33].

Note that explicit logic reasoning differs from the so-called
neuro-symbolic AI techniques [10], [22], which typically
embed constraints into the loss function and then train the
model. There is no loss function or training involved in explicit
logic reasoning. Although we do not use it in this paper, it is
possible to introduce fuzziness and hard/soft assertions in such
reasoning [32].

C. Fine Tuning Algorithm

Fig. 2: Application Directed Fine-tuning of VLMs
With all the pieces in place, we describe the overall fine-

tuning algorithm as illustrated in Fig. 2. The flowchart and
description here are somewhat simplified for clarity, and vari-
ations may be used in an actual implementation. The purple
boxes show the input/output data and the blue/green boxes
show operations. We start with two datasets of input images
(or videos): the fine-tuning dataset (FTD) and the evaluation
dataset (ED). As stated earlier, EDs need not be labeled, al-
though they are labeled in our case and allow the study of both
consistency-based and accuracy-based evaluations. Ideally, the
eval dataset should include one or more inputs from each
VLMm class, whereas each fine-tuning batch focuses on a
specific class(es) of VLMm that fails the consistency checks.
Note that the eval dataset differs from the test dataset, which
will be used to test the performance after fine-tuning.

The shown “Start” of the fine-tuning loop uses a batch of
inputs from ED, depicted as eval-batch in Fig. 2, for each
evaluation. It runs the eval-batch through VLMm, VLMa (if
used), and TCV inferencing steps and collects the results. The
outputs provide the “groundings” for the relevant assertions
in the logic representation of the detected classes and proxy

Fig. 3: Finding key objects in the scene

activities and enable consistency checks with the help of the
Logic rules database, which is prebuilt. For example, in Fig. 3,
the TCV (YoLov8) gives the bounding boxes of all the cars,
and we can assign them some pseudo-IDs, such as car1, car2,
etc. The recognized class here by VLMm would be class 1
(from the left column in Table IV), and by VLMa will also be
class 1 (from a right column in Table IV). The proxy activity
set Sm1 (Ap) includes the activities (#1,#3) stated abstractly in
Table VII. These would be grounded in the analysis of the
shown frame and a few prior frames in the video. Thus, the
grounding of #1 (“A car behind another car in the same lane”)
will require the pseudo-IDs of the two vehicles and the truth
value of the statement. Thus, after grounding, we obtain a
statement like: “car2 moving behind car1 in the same lane”.
This grounding will be done in the logic domain (not natural
language), and it will mark the corresponding assertion as true.

Following the grounding of all the assertions, we use SMT
to check the consistency between the VLM outputs and
grounded assertions. Suppose no inconsistency is observed
for an eval-batch. In that case, we remove it from ED.3

In case of inconsistency, the SMT framework provides the
offending assertions (i.e., the subset of assertions that failed).
This provides us with the VLM class for which more fine-
tuning is needed. Thus, the next step is to choose a batch
from FTD, depicted as FT-batch in Fig. 2. Subsequently, this
batch is removed from FTDs, and the evaluation resumes.

To avoid clutter, the figure shows a single lumped termi-
nation condition – these checks would be placed in suitable
places in the real code. The termination occurs if we run out
of eval batches (i.e., only the just processed one is remaining),
run out of fine-tuning batches, exceed a fine-tuning time limit,
or the consistency measure (computed over a few iterations)
stops improving.

Initially, both VLMs are fine-tuned using a set of randomly
selected labeled inputs. In the case of video-based VLMs,
we chop longer videos into small ones so that each video
focuses on only one class of interactions as far as possible.4

We label (or caption) these video segments according to the

3This action rests on the assumption of monotonicity, i.e., after an evalua-
tion batch passes all the tests, it should not fail in future iterations, and thus
is no longer helpful to expose weakness in VLM training. Non-monotonicity
is possible but was not observed.

4Even with very short video segments, it is possible to have more than one
activity. Such situations can be recognized by defining additional composite
classes for conditions that are likely to occur together sufficiently often. It is
expected that the number of such combinations will be small.
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requirements of the specific VLM used. For image-based
VLMs, we label each frame in the video segment identically.

IV. DETAILS OF EXPERIMENTAL SETUP

A. VLMs Used For Evaluation

We have evaluated our finetuning methodology on image-
and video-based VLMs [50]. We also consider both LLM-
backed VLMs and those that merely do image-text matching.
Each of these uses a different strategy to align vision and
language models. By analyzing these diverse models, we aim
to derive conclusions with a certain degree of generality.

MiniGPT-4 uses BLIP-2 (Bootstrapping Language-Image
Pre-training) [23], which defines two trainable layers to align
a frozen vision transformer model with a frozen LLM model.
MiniGPT4-Video [5] is an extension of MiniGPT-4 that pro-
cesses a sequence of frames and not only considers visual
content but also incorporates textual conversations, allowing
the model to answer queries involving both visual and text
components effectively. X-CLIP [27] is a popular video-
text matching-based VLMs. X-CLIP is designed for video-
text retrieval and generates multi-grained visual and textual
representations. Video-LLaMA [49] is a state-of-the-art multi-
modal framework that allows LLMs to comprehend audio and
video signals.

In recent years, the selective state space model (SSM)
has emerged as an appealing alternative to transformer-based
VLMs [42]. For example, VideoMamba [24] is a purely SSM-
based model tailored for video understanding. In a classic
ViT style, VideoMamba seamlessly integrates the advantages
of convolution and attention. It provides a linear-complexity
method, which is attractive from a real-time situational un-
derstanding perspective. We have explored our finetuning
mechanism using VideoMamba and found similar results as
stated below.

B. Description of Datasets Used

We evaluated our fine-tuning methodology using three very
different datasets. The first two involve limited activities,
whereas the third one is much more open-ended. Our first
dataset, called TU DAT [20], concerns road traffic and con-
tains diverse accident types, weather conditions, and videos
collected in challenging environments. Fig. 3 shows a scene
from this dataset showing a rear-end accident.

Fig. 4: Green belt movement patterns
in Taekwondo

Our second
dataset, the
Taekwondo dataset,
captures movements
performed by
Taekwondo athletes.
Understanding the
movement patterns is
a crucial component
of Taekwondo
training, as explained
in the Taekwondo America student manual [2]. This dataset
has 35 videos, which feature either a single student or
multiple students performing the movements in sequence for

each belt pattern. Fig. 4 (a) shows the walking stance low
block, and (b) shows the walking stance reverse punch of a
student in a dark green belt pattern.

(a) (b)

Fig. 5: Few activities from Kinetics dataset
Our third dataset is the Kinetics-100 [16], a large video

dataset focused on human actions. The list of action classes in-
cludes single-person actions (e.g., drawing, drinking), person-
person actions (e.g., hugging, shaking hands), and person-
object actions (e.g., opening gifts, mowing lawn, washing
dishes). Kinetics-100 has 100 human action classes, with
400–1150 clips for each action, and each clip lasts around 10
seconds. Fig. 5 shows some activities from the Kinetics-100
dataset, such as (a) Lawn mowing and (b) Washing dishes.

Although we chose a rather large number of activities from
this dataset for evaluation purposes, the choice would center
on unusual or anomalous activities.

TABLE III: Dataset details
Dataset fine-tuning Eval Test

type Data Data Data
TU DAT 200 75 45

Taekwondo 105 65 30
Kinetics 2000 800 350

Table III shows the de-
tails of all three datasets
considered in this paper.
We have used several
augmentation methods to
acquire enough data vol-
umes for both TU DAT and Taekwondo datasets, using Keras
built-in capabilities. Keras provides various methods for real-
time image augmentation, where the enhancement is per-
formed while the network processes each image. The em-
ployed augmentations encompass flipping, translation, shear,
and rotation.

C. Classes Used to Fine-Tune VLMs
The TU DAT dataset contains several accident scenarios

in road traffic, forming the classes for fine-tuning a VLM.
Since our proposed method includes fine-tuning two VLMs,
the videos in the TU DAT dataset have been categorized into
modeling accident scenarios for VLMm and recognizing the
relative position/movements of vehicles for VLMa. The de-
scription of classes used in fine-tuning VLMm and VLMa on
TU DAT are shown in Table IV. The table shows classes with
the same number side by side for VLMm and VLMa, reflecting
a one-to-one relationship between them. This relationship will
be further captured through the logic assertions used to check
consistency.

For the taekwondo dataset, VLMm is fine-tuned to recog-
nize the leg movements of the students, while VLMa is fine-
tuned to identify the students’ arm movements. The description
of classes used in fine-tuning VLMm and VLMa on the
Taekwondo dataset are shown in Table VI.

Both datasets exhibit simple activities that TCV can ef-
fectively identify but would need specialized training for the
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TABLE IV: Description of Classes used for TU DAT Dataset

No. Classes in VLMm Classes in VLMa

1 Car hit by another from behind car moving in same direction and one behind another
2 Car hit by another car from side Car moving in opposite direction and perpendicukar to each other
3 Car hit by another car from front Car moving in opposite direction
4 Car hits a static object Car moving very close to static object
5 Motorcycle hits a pedestrian Motorcycle moving very close to in same or opposite direction or perpendicular to walking pedestrian
6 Traffic videos Cars moving next to, across, one behind another, in same or opposite direction
7 Not defined Car & motorcycle moving next to one another
8 Not defined Pedestrians walking

TABLE V: Description of Classes Used for Kinetics Dataset

No. VLMm

Classes
VLMa Classes

1 Arm
wrestling

Using one arm in gripping the opponent’s hand,
applying pressure, stabilizing the body with both the
legs, adjusting posture for leverage

2 Baking
cookies

Mixing ingredients, rolling out dough, shaping cook-
ies with hands, using legs to reach the oven, and
opening it to place the baking tray inside

3 Brushing
teeth

Using one hand to hold the toothbrush, apply tooth-
paste with other hand, and move it in circular motions
to clean the teeth and gums

4 Cart
wheel-
ing

Both hands push off the ground and support the body
while the legs kick up and rotate in the air to complete
the cartwheel

5 Cheer
leading

Using both hands to perform motions like clapping,
waving, or holding pom-poms, while legs execute
jumps, kicks, and stunts to enhance cheer routines

6 Moving
Lawn

Using one of the hands to start the mower, adjust
steering and cutting height, using both legs in pushing
or guiding the mower and walk around obstacles

7 Washing
dishes

Using both hands to scrape the dishes, applying soap
to the dishes and rinsing the dishes with water

TABLE VI: Classes Used for Taekwondo Dataset

No. Classes in VLMm Classes in VLMa

1 Left leg still, right leg still Left arms and right arms out
2 Left leg still, right leg forwards Left arms out, right arms

folded
3 Left leg still, Right leg back-

wards
Left arms folded, right arms
out

4 Right leg still, Left leg for-
wards

Left arms and right arms folded

5 Right leg still, Left leg back-
wards

Left arms on the head, right
arms folded

6 Left leg forward, Right leg
backwards

Right arms on the head, left
arms folded

7 Right leg forward, Left leg
backwards

Not defined

kinetics dataset, making VLMa attractive. We have carefully
chosen approximately 50 pertinent classes (activities) out
of 100 activities.5 The comprehensive description of all 50
activities has been omitted due to space constraints; therefore,
we present the descriptions of some of the selected activity
classes utilized in fine-tuning VLMm and VLMa on Kinetics
in Table V.

D. Identification of Proxy Activities

To illustrate the derivation of proxy activities, we start with
a sample enumeration of simple activities, which in the traffic

5Selecting 50 out of 100 is done for stress testing purposes; typically, only
a small percentage of activities would be worth monitoring.

context are simply the spatial relationships between the key
objects. These are listed informally in the top part of Table VII
but can be easily expressed as logic assertions. Note that we
have expressed the relationships generically since we want to
be able to check them for any pair of cars or a car and a
pedestrian. The object IDs will come from processing actual
videos, as described next.

TABLE VII: Illustrating proxy activity identification

Possible spatial relationships (informal)

A car behind another car in the same lane
A car facing another car in the same lane
A car moving closer to next car
A car moving into next lane in same direction
A car moving into next lane in opposite direction
A pedestrian in a traffic lane.
A car moving closer to a pedestrian
Grounding of spatial relationships (informal)

car1 and car2 moving one behind another
car1, car2, car3 & car4 traveling in same lane
car1 is following car2 at very close distance
car1 and car9 traveling in the opposite lanes
car7 is parked and not moving
car5, car8, & car9 traveling in the same lane

TABLE VIII: Assertions for Reasoning

Variables: car1, car2.., car9 are integers
Functions: Boolean, each with one Integer argument
move behind(), move very close(), move opp dirn()
move same dirn() car hit from behind()
Groundings:
move behind(car1,car2) ∧ move very close(car1,car2) ∧
move constant dirn(car1) ∧ move constant dirn(car2) ∧
move constant dirn(car5) ∧ move constant dirn(car8) ∧
move constant dirn(car8) ∧ move constant dirn(car9) ∧
move opp dirn(car1,car9) ∧ move behind(car1,car2) ∧
move very close(car1,car2) =⇒ car hit from behind (car1,car2)

We use Yolov8 to identify the key objects in the input
images and track the objects across frames (in the case of
videos) to “ground” the situation in terms of objects, pseudo-
object IDs, positions, distances, and relative movements. For
example, for the scene in Fig. 3, the identified (grounded) rela-
tionships are listed in the bottom part of Table VII informally.
Again, for actual processing, we need to turn these into proper
logic assertions, shown in Table VIII.

Given the groundings, we can determine which assertions
in the top part of Table VII hold and for which cars. This
represents a step in the process we described abstractly in
section III-A to automatically determine proxy activities cor-
responding to each class identified by the VLM. The class is
about a car being hit by another car from behind.
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E. Fine-Tuning Specifics

We start by illustrating the mechanics of our fine-tuning
with an example shown in Table IX. We use a rear-end
accident scenario from the TU DAT dataset using XCLIP
VLM. After the initial fine-tuning stage, VLMm and VLMa

yield the captions as shown in the top two lines in the panel
below. The two outputs are inconsistent, which is affirmed by
not having the expected class correspondence between VLMm

and VLMa. Therefore, we select and retrieve the videos with
the labels as depicted for additional fine-tuning of both VLMs.

TABLE IX: Illustration of Consistency Check Based Fine
Tuning

VLMm Output: Matching Caption: car hit by another from behind
VLMa Output: Matching Caption: car moving in opposite direction

Consistency Check: NO - VLMm output is inconsistent with VLMa

output
Retrieve Videos with labels: carhit by another from behind, car
moving in same directions and one behind another
Fine Tune VLMm and VLMa

Select a new eval batch: To determine consistency between VLMm

and VLMa outputs
Consistency Check: YES - VLMm output is consistent with VLMa

output

For our results, we chose a fixed fine-tuning batch size of
20 videos. This is somewhat arbitrary, and one could vary
the number as well. To make a fair comparison, we execute
the loop four times for both directed and undirected cases,
each using 20 videos. We stopped at four iterations since the
improvement in consistency appeared to be stalled after that.
All experiments were performed on a server with two NVIDIA
RTX A6000 GPUs, each equipped with 10752 CUDA cores
and 48GB GDRR6 memory. Our results do not assume parallel
inferencing (see section III-C).

V. EXPERIMENTAL RESULTS

The proposed fine-tuning framework requires evaluation
in three critical areas: accuracy, consistency, and overhead.
Accuracy is defined as the fraction of test cases whose
classification matches the ground truth. For consistency, we
introduce a measure called Consistency Improvement Factor
(CIF), which is computed during the fine-tuning procedure.
We define CIF as (nb−ne)/nb where nb is the number of
inconsistencies recorded before the fine-tuning, and ne is the
number of inconsistencies at the conclusion of the fine-tuning
procedure. We compare the accuracy and CIF for directed vs.
undirected fine-tuning methods. To ensure fairness, for the
datasets with fewer main/auxiliary activities (TU DAT and
Taekwondo), we conducted both directed and undirected fine-
tuning for an equivalent number of iterations. For the Kinetics
dataset, which comprises 50 activities, we have performed both
directed and undirected fine-tuning for the same duration. The
overhead issue concerns fine-tuning time, inference time, and
justification time.

The results in the following show that the directed method
consistently outperforms the undirected one in all cases.
Furthermore, this differential applies with both image-based
VLMs, such as Minigpt4 [53] and its video-based version,

MiniGPT4-video [5]. We have also demonstrated our fine-
tuning mechanism on transformer-based VLMs that includes
an LLM as the backend like Video-Llama [49], and more
recent non-transformer, state space model(SSM) based VLMs
like VideoMamba [24]. The same applies to models not backed
by LLMs, such as XClip [27] and Video-MAE [41]. We also
show that the improvement is sustained for two datasets, one
relating to road traffic and traffic accidents and the other to
the Taekwondo classroom.

A. Achieved Classification Accuracy

The most important result for our (consistency-driven) fine-
tuning approach is the classification accuracy achieved on the
test-dataset. Table X shows this for all three datasets and for
both VLMm and VLMa. It is seen that the directed fine-
tuning significantly outperforms the undirected fine-tuning in
all cases and for both VLMs. However, the results depend on
the VLM and the dataset.

TABLE X: Accuracy of fine-tuning (Consistency-Driven)

VLMs Datasets Undirected
VLMm VLMa

Directed
VLMm VLMa

MiniGPT4
TU DAT 73.14 72.5 82.14 82.5

Taekwondo 72.1 71.7 81.1 81.45
Kinetics 79.6 78.4 84.15 84.78

MiniGPT4-V
TU DAT 75.4 74.15 83.3 83.55

Taekwondo 73.41 73.75 82.81 82.6
Kinetics 80.15 79.85 84.4 84.2

Video-LLaMa
TU DAT 78.25 78.35 85.12 85.84

Taekwondo 77.5 77.85 85.22 85.1
Kinetics 82.15 82.85 88.54 88.25

Video-Mamba
TU DAT 76.6 75.55 81.3 81.42

Taekwondo 76.41 76.8 80.85 80.8
Kinetics 80.15 79.35 83.85 83.14

Next, we compare our consistency-driven fine-tuning ap-
proach against the accuracy-driven approach on the test data.
Recall that the accuracy-driven fine-tuning selects inputs based
on the observed inaccuracies on eval-data (see section II-C).
The accuracy-driven fine-tuning does not require any TCV or
VLMa, but on the downside, it needs labeled eval-data and
cannot provide justifiability during inference time. Table XI
shows the accuracy-driven results for all three datasets. It is
seen that the accuracy here is almost the same as in Table X; ;
thus, we are not losing anything by following the consistency-
driven approach.6

TABLE XI: Accuracy of fine-tuning (Accuracy-Driven)

VLMs Datasets Undirected
VLMm VLMa

Directed
VLMm VLMa

MiniGPT4-V
TU DAT 74.5 75.5 82.0 82.52

Taekwondo 72.8 72.75 82.1 81.5
Kinetics 81.25 79.5 85.0 85.25

Video-Mamba
TU DAT 75.8 76.25 80.25 80.0

Taekwondo 77.15 75.5 80.12 80.35
Kinetics 79.4 80.55 84.6 84.1

B. CIF Results on TU DAT/Taekwondo Datasets

Table XII shows the achieved CIF for TU DAT and Taek-
wondo dataset using X-CLIP, Video-MAE and MiniGPT4

6The undirected results are slightly different than in Table X, possibly due
to randomness; they should ideally be the same.
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(image-based), MiniGPT4-Video, Video-Llama and Video-
Mamba respectively.

It is clear that our directed fine-tuning surpasses undirected
fine-tuning in all cases by a very significant margin. Note that
the substantial improvement in consistency persists for two
very different types of videos (road traffic vs. taekwondo),
confirming that the improvement is not tied to the video
characteristics.

TABLE XII: CIF results on TU DAT and Taekwondo datasets

VLM Task Undirected Directed
Models Datasets VLMm VLMa VLMm VLMa

X-CLIP TU Dat 54.5 55.15 74.25 73.65
X-CLIP Taekwondo 48.71 48.15 69.85 70.05

VideoMAE TU Dat 52.04 52.41 72.65 73.25
VideoMAE Taekwondo 48.5 49.06 69.8 69.31
MiniGPT4 TU DAT 59.78 60.41 75.51 74.35
MiniGPT4 Taekwondo 59.78 60.41 75.71 75.41

MiniGPT4-Video TU Dat 71.45 71.8 86.35 85.125
MiniGPT4-Video Taekwondo 68.40 68.1 83.10 83.08

Video-Llama TU Dat 72.16 72.41 86.85 87.32
Video-Llama Taekwondo 42.57 42.05 84.60 85.08
VideoMamba TU DAT 61.95 61.41 80.85 80.4
VideoMamba Taekwndo 61.60 61.75 76.52 75.45

We also examine the impact of preceding the use of VLMa.
This is possible because of the simplicity of VLMa tasks in
these two datasets. Table XIII shows the accuracy of VLMm

on test data with and without using VLMa. In the latter case,
the consistency check is done between the proxy activities tied
to VLMm and those tied to VLMa. We used MiniGPT4-Video
as the main VLM in this case. Although the directed method
still provides a substantial jump in accuracy, the result is lower
by a few percentage points without using VLMa.

C. CIF Results on Kinetics Dataset

TABLE XIII: Fine-tuning accuracy
w/ & w/o VLMa

Case TU DAT Taek.
Undirected 75.4 73.41
With VLMa 83.3 82.81
W/o VLMa 81.0 80.65

To assess the sig-
nificance of incorporat-
ing VLMa in datasets
that involve hundreds of
complex main activities
and multiple proxy ac-
tivities, we investigated the effectiveness of our fine-tuning
approach on the Kinetics dataset. In this dataset, the classes
in VLMm correspond to the activity classes included in the
dataset. In contrast, the classes in VLMa correspond to the
more straightforward activities associated with each activity
class. For instance, the activity class “shaking hands” in
VLMm is represented by two individuals shaking hands. In
comparison, classes in VLMa include descriptions such as
“two individuals standing straight up, facing each other, and
extending their right hands.” Initially, both VLMs are fine-
tuned on a random set of videos, followed by the selection
of fine-tuning videos belonging to the classes that show
inconsistency.

We follow the same fine-tuning procedure from Fig. 2 using
a batch size of 50. Table XIV compares the CIF measure
for MiniGPT4, MiniGPT4-Video, and Videomamba. (Others
are similar and not reported.) Note that we are running
directed and undirected fine-tuning for an equal amount of
total time. Consequently, a significant portion of the total time

is consumed in the fine-tuning of VLMa. Despite this, the CIF
of the directed approach is higher by about ten percentage
points. This robust validation of our earlier claim that the use
of VLMa can be easily justified in large, complex datasets
should reassure about the soundness of our conclusions.

TABLE XIV: CIF Results on Kinetics
Dataset

VLMs Undirected Directed
MiniGPT4 74.25% 83.7 %
MiniGPT4-V 78.5% 87.75%
Video-Mamba 72.15% 84.5%

D. Analysis of Fine-
Tuning Time

Fig. 6: Per-epoch prep and fine-
tuning Time for (a) Directed & (b)
Undirected cases

We also compare
the time required
for both directed and
undirected fine-tuning
approaches for all
three VLMs under
consideration. As
stated earlier, we
use four iterations
of fine-tuning for
both directed and
undirected cases,
each using 20 videos.
The time spent on
each iteration consists
of two parts, reported
as average per epoch,
over 500 epochs: (a)
actual fine-tuning
time and (b) preparation time. For the undirected case,
prep-time randomly retrieves 20 videos from the disk. For
directed cases, prep-time also includes the overhead of
running YOLOv8, querying VLMm and VLMa, generating
assertions, and using them for consistency checking.

Figs. 6 (a) and (b) show the average per-epoch fine-tuning
time and fine-tuning prep-time, respectively, for both undi-
rected and directed cases. As expected, the fine-tuning time
is almost identical in both cases and is in the ∼10-12 sec
range. The prep time is much shorter; a significant piece is
retrieving and loading videos from the disk. The time taken
by other pieces of directed fine-tuning is relatively modest.

E. Analysis of Justification Time

Fig. 7: Justification/Inference Time

To evaluate justifiabil-
ity, we take out the fine-
tuning section during in-
ferencing (thus breaking
the loop) but retain other
parts. In this case, each
inference will also be ac-
companied by the fol-
lowing information: (1)
Output justified by allud-
ing to the consistency be-
tween VLMs and across
VLMs and TCV-based proxy activity detection, and (2) Output
marked as faulty along with a reason why it is considered
questionable.
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Fig. 7 displays the inference and justifiability time for
MiniGPT4-Video, Video-Llama, and Video-Mamba on both
datasets. Note that the justifiability time differs from the fine-
tuning prep time reported above since we no longer have the
significant overhead of retrieving videos from disk for fine-
tuning.

It is seen that the justifiability time is about the same
as the inference time. This should be reasonable for critical
applications where inaccuracy can have serious consequences.
For other applications, we run justifiability less often. One way
to do this is to do the justification periodically. Another way is
to observe which classes have reliability issues and then use a
sequential procedure where VLMm first predicts the tentative
class, and then VLMa is run if the identified VLMm class is
among the less reliable ones.

F. Catastrophic Forgetting in VLMs

TABLE XV: Catastrophic forgetting

Ver Fine-Tuning target Accu.
V1 None (Orig. VLM) 36%
V2 V1 on VLMm classes 44%
V3 V2 on VLMa classes 32%

VLM/LLM
progress continues to
follow the path of an
ever more significant
number of parameters
(or weights) whose
values depend in unknown ways on the vast amount of
disparate pretraining data. When these models are fine-tuned
for a specific purpose, some weights are updated to enhance
performance on the targeted activities. But, in the process,
this may severely degrade the performance of other related
activities. This catastrophic forgetting (CF) phenomenon is
well-known but poorly understood [18], [26], [48]. However,
its presence means that it may not be sensible to train the
same VLM with both main and auxiliary activities.

Table. XV illustrates this in the context of XCLIP VLM
on the accident dataset. It shows the CIF of 3 versions of
the VLM. The first one is without any fine-tuning (denoted
as version V1). Version V2 results from fine-tuning V1 to do
VLMm classification, and version V3 results from fine-tuning
V2 for VLMa classes. It is seen that V3’s CIF is lower than
V1’s, thereby showing the CF phenomenon. This experiment
demonstrates why we kept VLMm and VLMa separate in our
fine-tuning methodology.

VI. RELATED WORK

Numerous VLMs exist and continue to emerge rapidly.
Some of these work only with images (e.g., MiniGPT4 [53],
LLAVA [25], Clip [38]), while others work with (short) videos
(e.g., Video-LLAMA [49], Video-ChatGPT [28], X-Clip [27],
MiniGPT4-video [5], VideoMamba [24]).

The logical reasoning used in this paper involves the ex-
tension of first-order deductive reasoning using explicit Rules
of Inference (RoIs). This differs from other recent notions of
“reasoning” using VLM/LLM outputs [8], [31], [45], [46].
Such reasoning fine-tunes the VLM/LLM to ask questions
and generate answers directly, potentially in conjunction with
external information obtained via web searches. The claims of
reasoning ability of LLMs have been surveyed and questioned
in [15], [43].

In the space of TCV and, more generally, deep learning,
the issue of reasoning is often described as neuro-symbolic
AI [10], [14], [22], [39]; however, it is mainly in the form of
indirectly enforcing the constraints in neural net operations or
loss function. For example, the popular Logic Tensor Networks
(LTN) [6] enforces logic constraints implicitly and approx-
imately by using differentiable extensions of Boolean oper-
ations [19]) to avoid the problem of exploding or vanishing
gradients. Explicit logic reasoning approaches are relatively
sparsely explored [3], [37]. Ref [44] attempts to generate
captions for videos based on captions of individual images
by teaching it to recognize the temporal context. Ref [32],
[33] attempts to use explicit reasoning for accident and driver
behavior characterization.

A conventional fine-tuning approach adds a classifier on top
of the visual backbone [36] or additional feature adapter [13].
Another type of fine-tuning is referred to as prompt-based,
where the classification weights are synthesized from nat-
ural language describing the classes of interest and which
involves fine-tuning the prompt to maximize the ground truth
token [51], [52]. The authors in [47] propose an algorithmic
framework that utilizes Reinforcement Learning to fine-tune
VLMs directly. They use VLMs’ chain of Thought (CoT)
reasoning capability to fine-tune them. However, the main
drawback of such a framework is that CoT reasoning plays
a critical role in enhancing the performance of VLMs during
fine-tuning.

VII. CONCLUSIONS

In this paper, we propose a novel consistency-driven fine-
tuning approach for VLMs, which combines traditional com-
puter vision (TCV) to recognize details with explicit logical
reasoning to improve VLMs’ performance. The mechanism
can substantially reduce the labeled data needs of fine-tuning
and achieve considerably higher accuracy than a mechanism
that does not choose the input intelligently. It also provides
a justification mechanism that can continue to be used at
inference time and a vital sanity check mechanism for sit-
uational awareness applications. The proposed mechanism is
quite general in that we can decide the level of complexity that
we wish to introduce in consistency checking. We illustrated
this tradeoff by checking consistency with and without the
auxiliary VLM, but its more thorough investigation remains
an area for future work.
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