
Improving System Configurations using Domain
Knowledge Assisted Semi-Supervised Learning

Negar Mohammadi Koushki, Sanjeev Sondur, and Krishna Kant
Computer and Information Sciences

Temple University
Philadelphia, USA

{koushki|sanjeev.sondur|kkant}@temple.edu

Abstract—In configuration engineering, the impact of configu-
ration variables on a system’s behavior is complex and cannot be
easily expressed analytically due to their non-linear and interde-
pendent nature. The recent use of machine learning (ML) models
to tackle this problem has been limited by the narrow range of
available training data, leading to a data bottleneck. To overcome
this challenge, this paper proposes a novel methodology that
employs semi-supervised learning (SSL) and data augmentation
(DA) techniques to generate pseudo-labeled data that closely
resembles the real dataset. By incorporating domain knowledge
into the data creation process, the proposed methodology allows
experienced users to utilize their qualitative behavior in machine
learning algorithms. The paper examines available SSL and
DA methods and identifies their limitations in IT configuration
studies, proposing alternative ways to adapt these techniques
to configuration studies. The study’s findings demonstrate that
the proposed data augmentation methodology’s newly created
pseudo-labeled data can support data-hungry applications. This
study represents the first attempt to extend SSL techniques to
address the data bottleneck limitations in configuration studies.

Index Terms—configuration, semi-supervised learning, data
argumentation, pseudo-labelled data, confidence measure,

I. INTRODUCTION

In an enterprise IT infrastructure, every major entity (e.g.,
application, virtual machine/container, infrastructure services,
and hardware) have many Configuration Variables (CVs),
often also known as configuration parameters that can be
set at run-time to some value within their specified range.
Although many instances of an entity (e.g., servers, VMs,
application instances, etc.) have identical configuration, there
is still a lot of variety in configuration, often necessitated by
different roles, resource amounts, and workloads. Many CVs
are considered as “baseboard” and remain at their default
values and may not be well documented or understood, but
the impact of the specified settings or dependencies between
them and other CVs is still there and may lead to problems.
Finally, while the CVs typically concern different aspects (e.g.,
performance vs security, network vs. storage, layer2 vs. layer3
network CVs, etc.), there are often dependencies that may or
may not be known. In other words, the mere existence of a
large number of CVs in most systems can lead to unexpected
behavior due to inadvertent incorrect settings or unexpected
interactions between the CVs and the workload. This results in

This research was supported by NSF grant CNS-2011252

the widespread and well documented problems of misconfigu-
rations whose impact may range from suboptimal performance
to large scale service disruptions [12, 22, 28].

There is often a tendency to define a large number of
CVs for each subsystem, particularly the software to provide
flexibility, but without clear description or thought behind
them, it only complicates the task of properly setting their
values for given goals such as a performance and/or cost
target. CVs also often take only a specific set of values in
a continuous space. For example, depending on the ”P”-state,
a CPU may run at 3.7 GHz, 3.3GHz, 2.5GHz, and 2.0GHz
but not at other frequencies. While these can be represented
by integer indices (e.g., 4, 3, 2, 1), such a translation loses
information about relative values. A related issue is that of
the workload, since the output (e.g., performance) depends
on the workload as well, and it is possible that the abnormal
workload patterns are not exercised until they actually happen.

The methods available to system administrators to avoid
or cope with misconfigurations are rather limited. Given the
complexity, neither a detailed simulation model nor a suitable
analytic model (e.g., queuing network models) is adequate to
set the CVs properly [21, 22, 26, 28]. The sheer number of
configurations also rules out a comprehensive experimental
characterization even if that were allowed. In reality, pro-
duction systems are not available for experimentation and
generally use configurations that have been tested out on the
test cluster. The configuration settings from the latter may
sometimes be difficult to translate to the production system
due to much smaller scale and the fact that they are not driven
by the live workload.

ML models can, in theory, capture various types of cor-
relations between CVs and the dependence of the output on
the workload and the configuration. However, their accuracy
and reliability entirely depends on the availability of data that
covers all important portions of the state space reasonably
well. Note that the ML model could well be trained on a
large amount of available configuration data, but if that data
represents only a small portion of the entire configuration
and/or workload space, the model is unlikely to be accurate
or reliable. In fact, the sparse or no coverage of the vast
portions of the configuration space mentioned above makes
a blind use of ML models dangerous and misleading as we
have shown in [?]. Furthermore, collecting a large set of

configuration data is often a demanding task [22, 7] leading
to a data bottleneck problem. In addition, ML and AI are
generally domain-agnostic and treat the datasets in the same
way [6]. ML models can, in theory, capture various types of
correlations between CVs and the dependence of the output on
the workload and the configuration. However, their accuracy
and reliability entirely depends on the availability of data that
covers all important portions of the state space reasonably
well. Note that the ML model could well be trained on a
large amount of available configuration data, but if that data
represents only a small portion of the entire configuration
and/or workload space, the model is unlikely to be accurate or
reliable. In fact, the sparse or no coverage of the vast portions
of the configuration space mentioned above makes a blind use
of ML models dangerous and misleading as we have shown
in [?]. Furthermore, collecting a large set of configuration
data is often a demanding task [22, 7] leading to a data
bottleneck problem. In addition, ML and AI are generally
domain-agnostic and treat the datasets in the same way [6].

Semi-supervised learning (SSL), where we create additional
pseudo-labelled data-points for enhancing the model training
can be helpful [23]; however, to capture behaviors beyond
what is contained in the raw data, it is essential to make
use of the “domain knowledge” that is invariably known
to administrators and routinely used informally for setting
configurations and diagnosing problems. The purpose of this
paper is to propose a methodology to make use of such
knowledge in creating additional labelled data for SSL with the
goal of coping with the limited coverage of the configuration
space. We consider several SSL methods for this [7, 23]
and demonstrate their relative performance in the configura-
tion context. To the best of our knowledge, this is the first
contribution towards extending SSL techniques to address the
limitations of data-bottleneck in configuration studies.

The rest of the paper is organized as follows. In section ??,
we discuss several SSL techniques and propose alternative
ways to adapt them to configuration studies. In section ??
we described our method for determining the confidence level
of generated data based on the domain knowledge. Section VI
then shows the evaluation results. Finally, section VIII con-
cludes the discussion.

II. DATA DRIVEN MODELING OF CONFIGURATIONS

A. Configuration Management Problem

Consider a system with M CVs denoted by the set C =
{Cj = j = 1..M} where Cj is the name or ID of the jth
CV. Each Cj has a current value between the lower and upper
bounds (”lb”, ”ub”) [lbCj

, ubCj
]. We assume that these CVs

are relevant wrt some measurable system behavior O (e.g.,
e.g., throughput, latency, etc.) under some workload W . Thus,
the specific values of the triplet (W,C,O) provide the data
for data driven models, where (W,C) are inputs and O is
the output (or “label” in ML terms). For notational simplicity,
we denote the data as a pair (xi, yi) where yi is the output
and xi is a vector xi = {xij , j = 0..M} where xi0 denotes
the workload measure and xij , j > 0 the selected value

of the CV Cj .1 Our entire dataset then can be denoted as
D = (xi, yi), i = 1..N . Note that even if N is large, many
of the data points are likely to be for the same or similar
configuration driven by different workload parameter values.
That is, the number of distinct configurations, say Nc, is
generally quite limited.

B. Supervised and Semi-Supervised Models

A supervised ML algorithm attempts to implicitly learn the
dependence of the output yi on the input vector xi. It could
then predict the label for unseen configuration ⃗x(a), as shown
in Fig. ??.

Semi-supervised learning augments the labelled data with
additional data to increase the accuracy of the model [7, 32].
In transductive learning, the task is to directly determine
the labels for all unlabelled data of interest without learning
a model first. Many of the early graph based methods are
of this nature [32] and essentially derive a label for the
unlabelled point based on the labels of labelled datapoints that
are adjacent in the graph model. On the contrary, inductive
learners assign pseudo-labels to the unlabelled data and use it
(in addition to labelled data) to learn a model. In this paper,
we focus entirely on inductive methods.

C. Characterizing Pseudo-labels

It is clear that a pure-data driven Semi-supervised learning
(SSL) cannot derive accurate pseudo-labels for the unlabelled
data unless the underlying marginal data distribution p(x)
over the input space x provides some information about the
posterior distribution p(y|x) [7]. Generally, this is stated as a
“smoothness” assumption, i.e., if inputs xi and xj are close,
then their labels yi and yj should also be close. The closeness
relationship is usually not transitive, which makes it difficult
to draw conclusions based on it. Yet another way to state
the same thing is through the clustering assumption, which
states that high density areas of inputs are likely to share the
same label. Conversely, the boundaries in the input space that
separate the output labels should pass through the low density
areas of the input.

In applying such properties to the configuration problem,
we first need to transform the input parameters so that one
could meaningfully speak of the closeness. For example, the
storage space (including caches, memory, and secondary stor-
age) generally (but not necessarily) increases in multiplicative
steps (e.g., 32, 64, or 128 GB memory), and the performance
increase, if any, from doubling is far less than double. Thus
a log compression of the inputs becomes necessary before
considering closeness. Real configurations are also likely to
be limited to discrete values rather than continuous [22]. For
example, based on the available DIMMs, the memory could
be 32GB, 48GB, or 64GB, but unlikely to assume other values
between 32 and 64. Similarly, the NICs may support 10, 40,
or 100 Gb/sec bandwidth. Also, each parameter will have a

1The use of a single parameter xi0 to denote workload is for notational
simplicity – one could surely represent workload by several aspects such as
intensity, burstiness, and even composition of different types of transactions.

2

range that is sensible based on the domain knowledge, even if
other values are feasible (e.g., minimum memory of 32GB).

On the output side, although the performance would gen-
erally vary smoothly with the resources, this is not true when
bottlenecks are involved. For example, if the bottleneck in the
memory bandwidth causes long access delays for the CPU, a
slight increase in the memory bandwidth could increase the
processing rate quite considerably. Similarly, as the resource
amount goes below some minimum level, an extreme resource
contention (e.g., thrashing) may kick in, thereby killing off the
performance. Another crucial issue in configuration studies is
that the data points (configurations) are far from representative
of the configuration space. Most of the configurations for
which we have the data are those that were chosen simply
because they perform well; others are likely to be much more
sparse. Thus, a pure data-driven pseudo-labelling is likely to
fail in configuration problems.

The SSL literature uses the notion of low-dimensional
manifold, which can be thought of as the surface where
points with similar output values (labels) cluster together. In
the configuration context, a manifold often arises because
of the compensatory effect of different CVs; for example,
a configuration of a small amount of DRAM and a fast IO
device may provide similar performance as the one with a
large amount of memory and slow IO device. The manifold is
generally an approximate, low-dimensional representation of
such behavior, and in practice like the rules of thumb that the
administrators already know.

Consider the 3D configuration space consisting of CPU
speed, memory bandwidth, and memory size. One could then
identify a 3D surface for each performance level (or output
label), which is the true manifold. If the low dimensional ap-
proximation to this manifold is approximately correct, for any
given target performance, very few points should lie outside
the corresponding surface. That is, the density of such points
should be low, and that can be used as a means for identifying
the boundaries of regions with different performance levels (or
labels).

D. Generating Pseudo-labels

The clustering and related assumptions above provide one
way to produce the pseudo-labels [20, 7, 32]. Another one,
known as a wrapper methodology, starts with some base
learners that are initially trained only on the labelled data.
These learners could then be used to predict the pseudo-labels,
and the pseudo-labelled data could then be recycled back
for further training of the learners. There are many methods
to do this and we shall discuss them in the following. The
generated pseudo-labelled data is then recycled back to train
the base learners further. The process can be repeated multiple
times, usually until the performance on the validation data has
stabilized, but there is no guarantee that this will happen or
the pseudo-labelled data will improve the results.

It is generally a poor idea to admit all generated data from
the base learners; instead, we need a reliable measure of
confidence in the label prediction, and retain only those data

items for which the confidence level is above some threshold
(e.g., 90%). Although most supervised learning algorithms
produce a confidence level measure in the last step (usually
using softmax), it is not necessarily a reliable measure. The
pseudo-labelled data could then be used like the labelled data
for additional training of the base learners, either starting with
the result of original training or from scratch with original and
pseudo-labelled data intermixed.

III. GENERATING AND LABELLING DATA

A. Generating Additional Input Data

For SSL, one often needs to generate suitable input data
before trying to put pseudolabels on it. An obvious approach
is to randomly choose a value for xij in the range [lbCj

, ubCj
]

for each j. However, doing so would ignore the dependencies
between the CV’s and may result in unrealistic configurations.
To address this, we can make use of the domain knowledge
in form of sensible ranges for other CVs relative to some key
CV (e.g., memory relative to CPU capacity or number of TCP
connections for the target throughput).

It is also possible to use deep neural nets, known as deep
generative models (DGM) [9?] that learns and preserves the
correlations across different dimensions. There are 3 popular
DGMs: (a) Normalizing Flows (NFs), (b) Variational Au-
toencoders (VAEs), and (c) Generative Adversarial Networks
(GANs). NF uses a sequence of invertible functions fi, i =
1..m (for some m > 1) applied to n-dimensional input data
to reduce it to a multidimensional Gaussian distribution. After
training, the mean and/or variance of the distribution could be
perturbed to generate additional data. The main problem with
NF is invertibility, which precludes dimensional reduction, and
makes it largely impractical for configuration studies.

A variational autoencoder is a variant of normal autoencoder
(AE) that learns the low dimensional distribution (rather than
a direct representation) of the data. Typically, VAE maps
all input data to the multidimensional normal distribution,
with the loss function minimizing both deviation from the
mean/variance of N(0, 1) and reconstruction error. VAE can
generate data by using a samples of N(0, 1) distribution. The
introduction of N(0, 1) is rather arbitrary and tends to make
the generated output ”smooth” and concentrated around the
mean. Also, VAEs require significant amount of data to train.

GANs can be used to generate any kind of multidimensional
data [18, 10], and work by co-training two distinct “adver-
sarial” networks, known as generator and discriminator. The
discriminator is rewarded for training itself (using real data)
and for flagging the generated data as fake. The generator
instead is rewarded for generating data that the discriminator
labels as real. The discriminator and generator play this
minmax game alternately until a Nash equilibria is reached.
GANs generally require enormous amount of data to train
and have many other issues [9, 16], and not suitable for
configuration studies.

3

B. Data Labeling and Estimating Label Confidence

With the typical black-box ML models, it is difficult to
be sure about its prediction on the previously unseen dataset,
particularly if the unseen data is quite different from the data
used for training [4]. Although most neural nets provide or can
be coaxed to provide confidence level for the output label,
the probabilities are generally inaccurate. In particular, the
decision trees and related models (e.g., random forest) are
known to provide a rather poor estimate of the label probability
since they focus on minimizing the tree size and enhanc-
ing classification accuracy rather than the probabilities [17].
Augmenting ML with either the explicit domain knowledge
can enhance the quality of the results [2, 6, 30]. We have
demonstrated this in our earlier work in the configuration
context [5, 15]. In particular, we have examined the notion
of quality of configuration by defining a Configuration Health
Index (CHI) that quantifies how well the system is configured
based on the expected behavior of the output y with respect to
the different components of the configuration vector x⃗ [22].

Intuitively, the CHI measures the variation of yi w.r.t xij for
a specific CV Cj while considering other CVs to be set at their
nominal values. For example, if index j refers to CPU cores,
the CHI may indicate performance vs. #cores. Both the x and
y values are normalized to the range 0..1 for this, and thus the
y value is expressed as a weight rather than intended output.
We assume a specific form for this curve based on the domain
knowledge. For example, if y connotes to some performance
measure and x to some resource amount, the generic behavior
is that of an initial rise in y with x but at a diminishing
rate, and eventually either saturating or even drooping (due
to bottlenecks/overhead). The parameters of this curve are
determined from the available data. This method implicitly
accounts for the dependencies across the CVs in addition to the
dependency of output on each specific CV. We have found it to
be extremely successful in accurate prediction even in cases
considered to be difficult [22]. Such an independent metric
(Eq. 1) will add to the credibility in the pseudo-labeled data
⃗x(a) provided that the data used for estimating CHI parameters

is separate from that used for training the ML model.
The subfigures in Fig. 1 show the CHI measure as a function

of different CVs for the BitBrains dataset as reported in [22].
The pseudo-labeled data-points z is as red diamond points ♦
and the original data-points x shown as black diamond , thus
showing the difference between the pseudo-labeled data and
the original system.

Thus CHI can provide a way of measuring the confidence
of the dataset ({ ⃗x(a), y(a)} independent of a ML model. Let
y
(a)
e denote the label estimated from CHI. Assuming that both
y(a) and y

(a)
e are normalized to the range 0..1, we propose to

estimate the confidence ε via the RMS error

ε = 1− ∥y(a) − y(a)e ∥2 (1)

Perturbation (ρ) : One of our key contributions is to extend
the metaheuristic that exploits the application domain knowl-
edge in grouping and choosing the parameters for perturbation.

The perturbation function ρ in Eq. ?? refers to the varying
influence of parameters that can guide which parameters need
to be perturbed and by how much to get to the next data-
point. This perturbation aspect is an estimate of the amount
by which one needs to move the current data-point (i.e.
configuration z) to another region that can possibly provide
a better neighbourhood point.

(Dr.Kant - need help-should we include Tunnelling?)
Base-predictor: For each artificially generated data z, we

consult the base-predictor to get an estimate of the output
label, i.e estimated behavior y′. We cautiously avoid using
the original ML base predictor (trained on the real world
experiment data) to generate the label y′, as this would result in
a yet-another ML model. Dr.kant- need help... Instead, we use
the probabilistic prediction based on the manifold assumption
to fairly infer accurate prediction based on the probability of
data-distribution(i think they use Lapaclian graphs). Thus, the
base learner used as a black box predictor (Fig. ??) is an
independent model....xxxx.

In our prior research [15], we presented an approach
for generating data using an improved metaheuristics-based
method. Our approach focuses on efficiently solving con-
strained optimization problems by leveraging domain knowl-
edge and selecting optimal configuration parameters for per-
turbation.

Fig. 1: Confidence procedure.

Fig. 2: Generation of pseudo-labeled data.

4

IV. METHODS FOR USING PSEUDO-LABELED DATA

Pseudo-labelled data can be used in many ways [32]. In the
following we describe and explore some of the key methods
in the configuration context.

A. Self-training

Self-training [29] is the most basic method wherein the orig-
inal supervised learning (SL) classifier is trained further using
both original and pseudo-labelled data. Here one could use an
expectation-maximization (EM) type of approach wherein we
include all of the unlabelled data at once and then iteratively
determine the parameters of the labeling process such that
we maximize the likelihood that the observed data belongs
to the assumed distribution of the labels. For example, Wu,
et.al. [27] use Naive Bayes for the classification version of the
problem. The implicit assumption here is that each dimension
(or configuration variable) k contributes independently to to
the label. Furthermore, by assuming that this contribution has
a normal distribution, they estimate its mean and variance to
maximize the likelihood that the observed data (both labelled
and unlabelled) comes from the computed distribution. The
Gaussian distribution is reasonable for continuous variables;
for discrete values, a binomial model can be used. In self-
training pseudo-labelled data may be given a lower weight
than the original data; either directly (if the confidence level
of each datapoint is known) or collectively through a single
hyperparameter.

See loss function from [25]...
Take section 3 from [32] ...

B. Co-training (Multiview)

Unlike self-training, co-training involves training K ≥ 2
distinct classifiers on the labelled dataset and then generating
pseudo-labelled data for one another. Again, the generated
data with confidence level above some threshold is used. If
the classifiers are strongly correlated, they will likely generate
very similar labels and thus the advantage of having K
classifiers is lost. The required data diversity may be either
natural (e.g., multi-modal datasets such as audio and video),
or induced by having different classifiers focus on different
features [31]. However, the selected features for each classifier
should be adequate for a good prediction of the output, else,
co-training could actually hurt the accuracy.

For example, for our configuration problem consider the in-
put parameter set S = (Cf , Cc,Mb,Ms, Il, Ir, Nb), i.e., CPU
frequency, #CPU cores, Memory bandwidth, Memory size, IO
read latency, IO rate (ops/sec), and network bandwidth. Sup-
pose that we split this into two subsets S1 = (Cf , Cc,Mb,Ms)
and S2 = (Il, Ir, Nb), and that we separately train two models
M1 and M2 using S1 and S2 respectively. Now if S′ is
an instance of S, we can write it S′ = (S′

1, S
′
2). If S′

is labelled with the output (the performance) P ′, both M1

and M2 will use the same label P ′ in training. However,
if S′ were unlabelled, the inferences produced by M1 and
M2, say, P ′

1 and P ′
2 respectively may be different due to

inadequate information given to each model. The related issue

is that of independence. If P ′
1 and P ′

2 are accurate, they
are likely to be highly correlated (since in this case both
M1 and M2 will likely be correctly using the underlying
dependencies). A different way of constructing M1 and M2 to
obtain two different projections of the original data (e.g., via
two different AEs), but there is again likely to tension between
accuracy (likely requires capturing the essential dimensions)
and independence (capturing different features).

Add from section 4.2. We used 2 views (why?), how did
you split the views?
Ref...(Wang and Zhou 2010). Zhou and Li (2010)
What is the loss function? How to co-train? what conditions to
add more pseudo labeled data? How to add more into original
data set? why? stop condition=loss condition.
Take section 4 from [32] ...

C. Boosting

Boosting refers to an iterative procedure for updating
weights for various data points. The weight of a data-item
corresponds to its influence on the loss function; this allows
the misclassified data points to be given a higher weight in
the next iteration and hopefully improve the classification. The
most popular boosting algorithm is AdaBoost along with with
SAMME (Stagewise Additive Modeling using a Multiclass
Exponential loss function). AdaBoost is an ensemble learning
method that combines weak learners, such as decision trees,
to create a strong classifier. SAMME extends AdaBoost to
multiclass classification problems by incorporating the concept
of exponential loss, and it seeks to minimize the weighted
training error [8, 11]. The algorithm can be summarized as
follows [11].

1. Initialize sample weights w
(1)
i = 1

N ,∀i Where N is the
total number of samples.

2. For iteration t ∈ 1..T

a. Train a weak learner ht using the weights w
(t)
i .

b. Compute a measure of “error” for learner t as
ratio of misclassified and all data points, i.e., εt =∑N

i=1,i∈C w
(t)
i /

∑N
i=1 w

(t)
i Where C is the set of datapoints

for which yi ̸= ht(xi)).
c. Compute the learner’s weight αt = 0.5 · ln[(1 − εt)/εt]

and update the sample weights for the next iteration:

w
(t+1)
i = w

(t)
i · exp (−αt · yi · ht(xi)) ,∀i

3. The final classifier is obtained by combining the individ-
ual weak learners:

H(x) = argmax
c

T∑
t=1

αt · ht(x)

Where c represents the class labels.
AdaBoost is defined only for supervised learning. To use it

in the SSL context, we initialize all weights as 1.0 and follow
the weight modification above only for pseudo-labelled data.
KK:***How to make weights 0..1?

5

D. Bagging

The Bagging classifier is an ensemble meta-estimator that
runs the same or different base classifier on random subsets
of the original dataset. The classifications from all classifiers
are then aggregated through voting or averaging, resulting in
a robust and reliable final prediction [1, 14].

KK:***Needs change To use bagging for SSL we gradually
add a fraction of the unlabeled data to the existing labeled
data at each iteration and then run the bagging classifier.
KK:***What’s the point? If intended to add 20% new data,
do you add few percent at a time and then do what?

E. Scalability issues in SSL Models

Add [32], section 6.3

V. EXPERIMENTAL EVALUATION

Negar to do: Restate the problem and assoc. to configuration
studies in 2 sentences to lay ground. what is the criteria
for validating the results? (how to validate the results? i.e
artificial data generation?) What data sets we use to validate
the solution. how did we address each of the sub-sections in
earlier discussions? assumptions, data generation, confidence
measure, validation? etc.

A. Data-set Overview: A Closer Look at the Data

We utilized the SSL models described above on multiple
publicly available data sets, which are listed in Table I. Since
these data sets originate from different studies, we have no
influence over factors such as data collection, experimental
procedures, CVs, and variability. We will now provide a brief
explanation of these data sets.

1) Cloud/Edge Storage Data-set: Edge computing provides
localized computation and storage capabilities in close prox-
imity to the data source, resulting in reduced latency and
less strain on higher layers of the infrastructure hierarchy. To
address the gap between low-latency local access and Cloud
connectivity, Edge Storage (ES)2 acts as a cache for remote
Cloud storage, leveraging limited local compute and storage
resources to enhance performance [24, 5].

However, effectively allocating resources for ES presents
challenges. It must adapt to the specific requirements of end-
users’ applications and devices, considering factors such as
processing latency, capacity, security, location, and cost. San-
jeev et al. [5] provide a comprehensive description of the ES
system, including various CVs that influence its behavior, as
well as workloads and other relevant details. In this study, the
ES configuration is represented by a combination of required
compute and storage resources: number of cores (nc), core
speed (cs), memory capacity (mc), memory bandwidth (bw),
and disk IO rate (di). The workload is defined by the request
arrival rate (ar), request size (rs), and metadata size (ms).
We express the ES configuration as a combination of required
compute and storage resources: nc, cs, mc, bw, di, ar, rs,
and ms. In the context of the ES system being studied, we

2[ES] https://www.kkant.net/config traces/CHIproject

(a) ES Data-set

(b) BB Data-set

(c) MIT Data-set

Fig. 3: Results of semi-supervised learning Models.

denote x⃗i = {nc, cs,mc, bw, di, ar, rs,ms}, and yi = {p},
representing the performance as the label.

2) BitBrains Data-set: The research utilizes another pub-
licly available dataset called BitBrains (BB)3, which consists
of performance logs obtained from 1,750 virtual machines
(VMs) in a distributed data center operated by BitBrains.
The dataset covers a span of four months and encompasses 5
million CPU hours across 5,000 cores. It primarily focuses on

3[BB] http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains (RND500) :

6

TABLE I: CVs and output of the data-sets.

Data-Set Domain Size
(NO, NA)

CVs x⃗ Output
(Label y)

ES [5] Cloud
Storage

991, 14717 No. of Cores, Core Speed, Memory Capacity, Memory Bandwidth, Disk
IO Rate, Request Arrival Rate, Request Size, Metadata Size

Performance

BB [3] Virtual
Machines

391, 3504 No. of Cores, Core Speed, Memory Capacity, Network Data Rcvd., Network
Data Transmit, Disk Read Throughput, Disk Write Throughput

CPU Usage
(%)

MIT [19] HPC Env. 97376, 20457 CPU Frequency, Resident Memory Size, Virtual Memory Size, Amount of
Data ReadWrite (MB)

CPU Util.
(%)

TABLE II: Comparing data accuracy through varying confidence thresholds and fractional data.

Dataset Model
Confidence Threshold = 0.90 Confidence Threshold = 0.95 Confidence Threshold = 0.99
Fractional Data Fractional Data Fractional Data
0.70 0.80 0.90 0.95 0.70 0.80 0.90 0.95 0.70 0.80 0.90 0.95

ES

Baseline 0.7136 0.6935 0.7035 0.7035 0.7136 0.6935 0.7035 0.7035 0.7136 0.6935 0.7035 0.7035
ssSelfTraining 0.8141 0.8141 0.8191 0.7990 0.8141 0.7990 0.8141 0.8191 0.8141 0.8141 0.8141 0.8141
ssBagging 0.7638 0.7688 0.7638 0.7638 0.7839 0.7839 0.7839 0.7789 0.7789 0.7889 0.7789 0.7739
ssAdaBoost 0.7638 0.7638 0.7688 0.7638 0.7638 0.7739 0.7688 0.7538 0.7688 0.7638 0.7688 0.7538
ssCoTraining 0.8191 0.8191 0.8191 0.8191 0.7839 0.7839 0.7839 0.7839 0.7839 0.7839 0.7839 0.7839

BB

Baseline 0.5823 0.5823 0.5949 0.5949 0.5823 0.5823 0.5949 0.5949 0.5823 0.5823 0.5949 0.5949
ssSelfTraining 0.7468 0.7468 0.7468 0.7342 0.7468 0.7342 0.7468 0.7468 0.7468 0.7468 0.7468 0.7468
ssBagging 0.6835 0.6962 0.6962 0.6962 0.6709 0.6709 0.6835 0.6709 0.6835 0.6835 0.6835 0.6962
ssAdaBoost 0.6582 0.6582 0.6582 0.6582 0.6582 0.6582 0.6582 0.6582 0.6582 0.6582 0.6582 0.6582
ssCoTraining 0.6835 0.6835 0.6835 0.6835 0.6835 0.6835 0.6835 0.6835 0.6835 0.6835 0.6835 0.6835

MIT

Baseline 0.7354 0.7403 0.7411 0.7419 0.7354 0.7403 0.7411 0.7419 0.7354 0.7403 0.7411 0.7419
ssSelfTraining 0.7822 0.7823 0.7818 0.7816 0.7818 0.7822 0.7817 0.7818 0.7823 0.7815 0.7823 0.7823
ssBagging 0.7852 0.7862 0.7857 0.7868 0.7855 0.7854 0.7851 0.7847 0.7850 0.7847 0.7857 0.7844
ssAdaBoost 0.7862 0.7837 0.7842 0.7840 0.7853 0.7859 0.7865 0.7854 0.7859 0.7864 0.7864 0.7861
ssCoTraining 0.7990 0.7990 0.7990 0.7990 0.7993 0.7993 0.7993 0.7993 0.7992 0.7992 0.7992 0.7992

Fig. 4: Execution time comparison for the BB data-set.

providing specialized interactive services and batch processing
workloads within a cloud environment, catering to managed
hosting and business computation needs. Noteworthy clients
include prominent banks, insurance companies, credit card
operators, and more.

Iosup et al. [3] conducted a thorough analysis of requested
and actual resource usage, focusing on CPU, memory, disk,
and network resources. The traces contain data for each
virtual machine (VM), with the initial configuration denoted
as CV . Table I outlines the attributes associated with each

VM configuration.
Considering the limited knowledge of the dataset specifics,

we define the BitBrains VM configuration as a combi-
nation of essential resources: compute (number of cores,
nc), storage (memory capacity, mc), network (receive band-
width, nwrd, and transmit bandwidth, nwwr), and disk load
(read request rate, dskrd, and write request rate, dskwr).
These resources can be represented by the vector x⃗i =
{nc,mc, nwrd, nwwr, dskrd, dskwr}. The corresponding la-
bel (yi = {cu}) in this context represents the CPU usage.

3) MIT Cloud Data-set: MIT recently published a compre-
hensive dataset4 from their Supercloud petascale cluster [19],
which involved running a diverse range of high-performance
computing (HPC) workloads. This extensive dataset, totaling a
massive 2 terabytes (2TB), includes time-series data from var-
ious aspects such as the scheduler, file system, compute nodes,
CPU, GPU, and even sensor data from physical monitoring of
the cluster’s housing facility. For our analysis, we specifically
focused on the second partition of the dataset, which consisted
of 480 CPU nodes. Each node was equipped with a powerful
configuration, featuring dual 24-core Intel Xeon Platinum 8260
processors, 192GB of RAM, and a high-performance parallel
file system called Lustre, which operated on a 3-petabyte Cray
L300 parallel storage array.

The key data attributes considered in this study were CPU
frequency (cf), residual memory (rms), virtual memory size
(vms), amount of data read/write (mw), and CPU utilization
percentage (cu). To address our specific problem, we formu-
lated the input vector as x⃗i = {cf, rms, vms,mw}, and the
corresponding output values as yi = {cu}.

4[MIT] https://dcc.mit.edu

7

Fig. 5: Results summary.

B. Experimental setup

In this paper, we conducted experiments to evaluate the
performance of SSL models using different datasets introduced
in the above section. For each dataset, we followed a standard
split where approximately 20% of the labeled data (original
data) was set aside as test examples, while the remaining
labeled data, along with artificially generated unlabeled data,
was used as the training set. Our experiments aimed to
investigate the impact of gradually adding unlabeled data to
the labeled data in the training set while considering different
confidence measures for the artificial data.

In order to accomplish this, we employed a confidence
measure to assess the quality of the artificial data generated
during the training process. Initially, we trained the model
using the original data. Subsequently, we gradually incorpo-
rated unlabeled data into the labeled training set, starting with
10% and increasing it in 10% increments (20%, 30%, and
so on). This iterative process allowed the algorithms to adapt
to unfamiliar labels and prevented convergence to incorrect
points. Additionally, we explored the impact of different
confidence measures on the synthetic data. Specifically, we ex-
perimented with confidence levels of 90%, 95%, and 99%. By
incorporating these measures, our objective was to examine the
relationship between confidence levels and the performance of
SSL methods. Through systematic variations in the quantity
of unlabeled data and the confidence measures applied to the
synthetic data, we were able to evaluate the accuracy of the
models across diverse datasets. This comprehensive analysis
enabled us to assess the influence of these factors on model
performance.

In addition to evaluating SSL models, we employed a
performance prediction oracle, represented as a black box
function, to establish a baseline for comparison. This oracle

helped us identify the best prediction model for each dataset,
serving as a reference point. For instance, in the case of
Dataset ES, we found that the Logistic Regression model
outperformed over 20 other machine learning algorithms con-
tained within the black box. The baseline evaluation involved
training and testing the model exclusively on the original
dataset, without considering any confidence measures.

As depicted in Figure 3, the results clearly demonstrate
that SSL models achieved higher accuracy compared to the
baseline. The SSL models consistently outperformed the base-
line approach across multiple datasets. These findings provide
compelling evidence for the efficacy of SSL techniques in en-
hancing prediction performance by incorporating both labeled
and unlabeled data, as well as utilizing confidence measures
to guide the learning process.

Figure 4 illustrates the execution times in seconds for
different models using the BB data-set. Despite the baseline
model having the shortest execution time of 4.74 seconds,
it is important to consider its lower accuracy compared to
other models. Consequently, focusing solely on the baseline
model’s execution time would undermine its significance.
Conversely, the ssCoTraining and ssSelfTraining models ex-
hibited execution times of 5.11 and 5.2 seconds, respectively,
while maintaining reasonable accuracy levels. In contrast, the
ssBagging model required 17.29 seconds for execution, and the
ssAdaBooster model had the longest execution time of 18.57
seconds. These findings suggest that although the ensemble-
based models require more time, they may provide superior
accuracy compared to the baseline model.

Table I provides information on three data sets: ES, BB, and
MIT. These data sets belong to the domains of Cloud Storage,
Virtual Machines, and HPC Environment, respectively. The
size of each data set is indicated by the numbers NO and NA,

8

representing the number of original data points and artificial
data points. Each data set has specific CVs listed in the
table, along with their corresponding outputs. The CVs capture
different aspects relevant to each data set’s domain, while the
outputs represent the specific target or label being predicted.

Table II compares data accuracy across different confidence
thresholds and fractional data values. The fractional data
values represent the amount of unlabeled data being added
to train the model. The table is divided into three sections
based on the confidence threshold: 0.90, 0.95, and 0.99. Within
each section, the fractional data values are listed as 0.70, 0.80,
0.90, and 0.95. The table presents results for three different
datasets: ES, BB, and MIT. Each dataset is evaluated using
various models, including Baseline, ssSelfTraining, ssBagging,
ssAdaBoost, and ssCoTraining. The table lists the accuracy
values for each combination of dataset, model, confidence
threshold, and fractional data value.

Upon reviewing the results, it can be observed that the
Baseline model consistently achieves relatively lower accuracy
compared to the other models across all datasets. The ssSelf-
Training model demonstrates higher accuracy values, particu-
larly at confidence thresholds of 0.90 and 0.95. Conversely, the
ssBagging and ssAdaBoost models generally produce similar
accuracy scores. The ssCoTraining model performs well, ex-
hibiting high accuracy across different confidence thresholds
and fractional data values.

VI. RESULTS AND DISCUSSIONS

Important: What is your baseline for comparison or for
this study???
Take ideas from [7] 2.4 Empirical evaluation of semi-
supervised learning methods - why it is difficult to evaluate?
but in our study we are not evaluating the Ssl models, but
we are interested in config studies and generating addition
pseudo-labelled data...

A. Results Quality

result 1: quality of artificial data, e.g: 90% of my artificial
data has a conf level ≥ 95%. Quantity of data: original dataset
N took 4 months to collect, artificial dataset 5xN took 4 hours
to generate !!!
result 2: confidence in ’artificial dataset’ i.e. confidence in
’confidence metric’!!! We used blind (unseen, keep-aside) data
to eval/test the confidence model. In CHI we called it HI, here
we use the loss function above as conf. metric.
result 3: quality of new pred. ’model’ (e.g regression, decision
tree) is close to 95% of orig model, even if we can not exceed
orig.pred.accuracy....we are still close to it using ’confident
artificial data’.
challenges in result 3: orig. pred model used algorithm XYZ
(e.g decisiontree, logistic regression etc) and memorized some
weights w1, w2, etc. New pred model ”MOST LIKElY” will
use the same algorithm XYZ and predict w1’, w2’, etc. So new
pred. model maybe poor in weights/because of new dataset.

VII. TEAM DISCUSSIONS

dataset(s) – ?? ES??
Collect N artificial points. How much is N? Let’s say real

data is M, N = 3*M... Where do you set the confidence
threshold, 0.9? 0.8? 0.7? Which model works better?

SSL Models (to use artificial + original data combined):
what percentage, what eval/test dataset, what confidence level
and what fraction of unlabelled data? RESULTS? How do you
eval. ”final accuracy” ?

To do: Negar - (1) Existing dataset [13, 3, 5], get new data
set from recent papers (sanjeev will verify if data set is usable
for our config studies), Results - what do you want the paper
to say- strong points- eval results

KK:***To do: Dr Kant (i) review overleaf (iii) manifold
clustering probability discussion, w.r.t. predicting new labels
for unseen data.

VIII. CONCLUSION & FURTHER DISCUSSIONS

Closing the gap between theory and practice is critical to im-
prove the reliability of DGM training and reduce the immense
computational costs. This paper has demonstrated the sampling
problem in VAEs and enforcing the Lipschitz constraint in
WGAN training. While most existing DMG approaches use
black-box neural networks as generators, there is a lack of
models for incorporating domain specific knowledge. This is
a significant limitation in scientific studies.

REFERENCES

[1] Leo Breiman. Bagging predictors. Machine learning,
24:123–140, 1996.

[2] Changyu Deng, Xunbi Ji, Colton Rainey, Jianyu Zhang,
and Wei Lu. Integrating machine learning with human
knowledge. Iscience, 23(11):101656, 2020.

[3] Iosup Alexandru et al. The grid workloads archive.
FGCS, 24(7):672–686, 2008.

[4] Maksims Ivanovs et al. Perturbation-based methods for
explaining deep neural networks: A survey. Pattern
Recognition Letters, 150:228–234, 2021.

[5] Sanjeev Sondur et al. Towards automated configuration
of cloud storage gateways: A data driven approach. In
Cloud Computing, pages 192–207. Springer, 2019.

[6] Tirtharaj Dash et al. A review of some techniques
for inclusion of domain-knowledge into deep neural
networks. Scientific Reports, 12(1):1040, 2022.

[7] Van Engelen et al. A survey on semi-supervised learning.
Machine learning, 109(2):373–440, 2020.

[8] Yoav Freund and Robert E Schapire. A desicion-theoretic
generalization of on-line learning and an application to
boosting. In EuroCOLT’95, Spain. Springer, 1995.

[9] Ian Goodfellow and et al. Generative adversarial net-
works. Communications of the ACM, 63(11), 2020.

[10] Google. Overview of GAN Structure. https://developers.
google.com/machine-learning/gan/gan structure, 2020.

[11] Trevor et al. Hastie. Multi-class adaboost. Statistics and
its Interface, 2(3):349–360, 2009.

9

[12] Md Shahriar Iqbal, Rahul Krishna, Mohammad Ali Javid-
ian, Baishakhi Ray, and Pooyan Jamshidi. Unicorn: Rea-
soning about Configurable System Performance through
the lens of Causality. In Proceedings of the Seventeenth
European Conference on Computer Systems, EuroSys
’22. ACM, 2022.

[13] Christian Kaltenecker, Alexander Grebhahn, Norbert
Siegmund, Jianmei Guo, and Sven Apel. Distance-based
sampling of software configuration spaces. In 2019
IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pages 1084–1094, 2019.

[14] Gilles Louppe and Pierre Geurts. Ensembles on random
patches. In Machine Learning and Knowledge Discovery
in Databases: ECML PKDD 2012, Bristol, UK, pages
346–361. Springer, 2012.

[15] Negar Mohammadi Koushki, Sanjeev Sondur, and Kr-
ishna Kant. Automated Configuration for Agile Software
Environments. In 2022 IEEE CLOUD, 2022.

[16] Jaime Perez, Patricia Arroba, and Jose M Moya. Data
augmentation through multivariate scenario forecasting
in data centers using generative adversarial networks.
Applied Intelligence, 53(2):1469–1486, 2023.

[17] Foster Provost and Pedro Domingos. Tree induction for
probability-based ranking. ML, 52:199–215, 2003.

[18] Lars Ruthotto and Eldad Haber. An introduction
to deep generative modeling. GAMM-Mitteilungen,
44(2):e202100008, 2021.

[19] Siddharth Samsi et al. The MIT Supercloud Dataset. In
2021 IEEE HPEC. IEEE, 2021.

[20] Chen Shani, Jonathan Zarecki, and Dafna Shahaf. The
Lean Data Scientist: Recent Advances Toward Overcom-
ing the Data Bottleneck. Communications of the ACM,
66(2):92–102, 2023.

[21] Sanjeev Sondur, Anis Alazzawe, and Krishna Kant. Op-
timal configuration of high performance systems. In
HPCS, 2020.

[22] Sanjeev Sondur and Krishna Kant. Performance Health
Index for Complex Cyber Infrastructures. ACM Trans.
Model. Perform. Eval. Comput. Syst., 2022.

[23] Enmin Song, Dongshan Huang, Guangzhi Ma, and Chih-
Cheng Hung. Semi-supervised multi-class adaboost by
exploiting unlabeled data. Expert Systems with Applica-
tions, 38(6):6720–6726, 2011.

[24] Polyzois Soumplis and et al. Resource Allocation Chal-
lenges in the Cloud and Edge Continuum. In Advances in
Computing, Informatics, Networking and Cybersecurity,
pages 443–464. Springer, 2022.

[25] Jafar Tanha, Maarten Van Someren, and Hamideh Afsar-
manesh. Semi-supervised self-training for decision tree
classifiers. International Journal of Machine Learning
and Cybernetics, 8:355–370, 2017.

[26] Qingyang Wang and et. al. Optimizing n-tier application
scalability in the cloud: A study of soft resource alloca-
tion. ACM ToMPECS, 4(2), June 2019.

[27] Zhiang Wu, Junjie Wu, and et al. Hysad: A semi-
supervised hybrid shilling attack detector for trustworthy

product recommendation. In 18th ACM SIGKDD, 2012.
[28] Tianyin Xu and Yuanyuan Zhou. Systems approaches to

tackling configuration errors: A survey. ACM Computing
Surveys (CSUR), 47(4):70, 2015.

[29] David Yarowsky. Unsupervised word sense disambigua-
tion rivaling supervised methods. In 33rd ACL, 1995.

[30] Shanshan Zhang, Lihong He, Eduard Dragut, and Slo-
bodan Vucetic. How to invest my time: Lessons from
human-in-the-loop entity extraction. In The 25th ACM
SIGKDD International Conference, 07 2019.

[31] Zhi-Hua Zhou and Ming Li. Semi-supervised learning
by disagreement. KAIS, 24:415–439, 2010.

[32] Xiaojin Jerry Zhu. Semi-supervised learning literature
survey. CS Technical Reports, 2005.

10

