AI-Driven Trouble Ticket Generation and
Misconfiguration Diagnosis in Enterprise Systems

Anonymous members

Abstract—Misconfigurations in enterprise IT systems remain
a leading cause of service disruptions and vulnerabilities. In
this paper, we present a self-adaptive AI agent that interactively
collects diagnostic symptoms through natural language conver-
sations and collaborates with an automated diagnosis system
to identify root causes. The AI agent holds a dialog with the
user to clarify the user complaint and then translates it into
structured diagnostic tickets by mapping symptoms to relevant
configuration variables (CVs) and assigning initial confidence
scores. These tickets guide ConfExp, a confidence-driven diag-
nostic framework, which refines hypotheses through system-level
test execution. The combined system significantly improves the
diagnosis process. In evaluations across 75 fault scenarios in
emulated enterprise environments, the system correctly identified
misconfigured components in over 93% of cases while reducing
the number of tests required by up to 47% compared to using
ConfExp alone. This demonstrates the effectiveness of combining
a large language model (LLM)-driven symptom elicitation with
confidence-guided test execution for scalable, automated trou-
bleshooting.

Index Terms—Al-driven troubleshooting, Enterprise network
misconfiguration, Root-cause analysis, Large language models.

I. INTRODUCTION

Enterprise IT infrastructures have evolved into complex,
multi-layered environments comprised of numerous interde-
pendent applications, network devices, and cloud services [1].
While such complexity enables significant scalability and
flexibility, it also creates ample opportunities for misconfig-
uration errors. Misconfigurations remain a prominent source
of system disruptions, performance issues, and security vul-
nerabilities [2, 3, 4]. Indeed, recent studies have shown that
about 80% of enterprise security incidents originate from mis-
configurations [5], and up to 65% of cloud security breaches
are directly attributable to configuration mistakes [6].

A key factor contributing to the prevalence of misconfigu-
rations is the widespread adoption of DevOps methodologies,
especially Continuous Integration and Continuous Deployment
(CI/CD) [7, 1]. Although these practices facilitate rapid soft-
ware updates and deployments, they simultaneously increase
the complexity and frequency of configuration changes [8,
9, 10]. Consequently, poorly understood interdependencies
and inadequately validated changes can quickly propagate
across systems, triggering widespread failures or vulnerabil-
ities [11, 12].

Traditional troubleshooting methods typically involve man-
ual triaging by expert administrators or rely on static decision-
tree-based systems [13]. Manual approaches, though flexible,
are labor-intensive, prone to human error, and difficult to scale.

Identify applicable funding agency here. If none, delete this.

Static decision-tree methods [14], on the other hand, lack the
adaptive capabilities necessary to handle the inherent ambigu-
ity in user-reported symptoms and frequently fail when initial
inputs are incomplete or imprecise. Additionally, existing
diagnostic procedures based on standardized tests often lack
discriminative power, making it difficult to precisely pinpoint
problematic configuration variables (CVs) [15, 16, 17].

The initial diagnosis step typically begins with a user
complaint, often ambiguous or vague, requiring iterative clari-
fication. In conventional settings, an administrator might man-
ually elicit additional information before preparing a trouble
ticket, but this approach is neither scalable nor consistently
effective. Recent advancements in large language models
(LLMs) [18, 19, 20, 21] provide a promising opportunity to
automate and enhance this process. Unlike traditional chat-
bot systems that rely on extensive databases of predefined
responses, LLM-driven agents possess remarkable capabilities
for generalization, requiring only limited training data to
adapt effectively to diverse user inputs and conversational
contextg [22, 23, 24, 25].

P—&—E-E—*

Enterprise AlAgent Trouble Diagnosis Root
User ticket Algorithm Cause

Fig. 1: Illustration of AI Agent in Diagnosis

In this paper, we present a novel self-adaptive Al agent [26,
27] that supports root-cause diagnosis of enterprise net-
work misconfigurations [28, 29, 30]. The agent interacts
with users through natural language dialogue, guided by an
LLM (Mistral-7B-Instruct) [31], and uses semantic filter-
ing to extract structured, diagnostically relevant information.
This information is passed to a diagnostic backend, powered
by (ConfExp), which incrementally isolates the root cause
through confidence-guided test execution [32]. We describe
the full workflow of our Al-agent—guided diagnostic pipeline
in Section II, including symptom elicitation, CV mapping, test
suggestion, ticket generation, and integration with ConfExp’s
iterative diagnostic engine.

Specifically, the contributions of this paper include:

« We propose an interactive Al agent that dynamically clar-
ifies user-reported symptoms through conversational in-
teractions, enhanced by semantic refinement techniques.

« We develop a semantic mapping approach that translates
natural language symptom descriptions into structured
CVs and assigns confidence scores reflecting their likeli-
hood of being misconfigured.

User Interaction Phase

User Complaint gf

Al Agent Processing Phase Root-Cause Analysis

(ConfExp Phase)

v

Symptom Extraction from QA Test Execution

History

Symptom-to-CV Mapping via

Classification by Al Agent ia
Embedding Similarity [[]}

(Network, App, ...)

Confidence Score
Refinement @

Initialization Early Termination

Check []

b4

Final Output

Generation (LLM-based)

7

v

ic Test Suggestion
(LLM-based) &

J
)
Cunfider;ce Score T‘L}

Vagueness & Redundancy
Filtering Root Cause

Identification

Fallback Question Retrieval Test Ordering

(Domain-Aware)

{
{ Follow-up Question (j
{
{)

v

[
[
[
Er.
[
[

|

Trouble Ticket Generation J

Conversational Al

Fig. 2: Al Agent Integrated with Misconfiguration Diagnosis.

« We propose a stepwise diagnostic method that identifies
complex service and network misconfigurations using
confidence-based prioritization for efficient resolution.

e We evaluate our diagnostic approach comprehensively
using realistic emulations of enterprise networks, run-
ning actual enterprise-grade services, and conducting
diagnostic tests commonly available to administrators,
ensuring immediate practical deployability.

o We show that the Al-guided framework significantly
reduces test overhead by up to 47% compared to using
ConfExp alone while maintaining high accuracy (93%)
and robustness even when the initial user input does not
accurately reflect the underlying issue.

« We highlight two representative edge cases: (a) when the
user provides the correct symptom, the Al agent’s sug-
gestions guide ConfExp to the right misconfiguration; (b)
when the user provides irrelevant symptoms throughout,
ConfExp still converges to the root cause using broader
system-level tests and confidence refinement.

The rest of this paper is organized as follows. Section II
presents an overview of our Al-driven diagnostic system and
its integration with the ConfExp framework. Sections II-B
through II-F describe the system components. Section III
details our evaluation, and Section IV concludes.

II. SYSTEM OVERVIEW

The proposed diagnostic solution integrates a conversational
Al agent with an existing automated diagnostic framework,
ConfExp [32], previously developed for systematic misconfig-
uration detection. An overview of ConfExp’s internal mecha-
nisms, including its confidence refinement logic and topology,
is provided in Section II-A. The overarching objective is to
seamlessly combine dynamic, interactive user-symptom elici-
tation with systematic, automated misconfiguration detection
at the network and service layers. Figure 2 illustrates the
overall architecture and workflow. The diagnostic pipeline
consists of the following primary components:

1) Upon receiving a user’s initial report, the Al agent (based
on Mistral-7B-Instruct LLM) dynamically generates con-
textually relevant follow-up questions. An internal itera-

ke
(Ordered Strategy)

tive refinement mechanism, involving semantic filtering
and redundancy checks, ensures each query contributes
meaningful diagnostic insight without redundancy or am-
biguity. If a generated query fails to meet quality criteria,
alternative fallback questions are dynamically selected to
maintain dialogue efficiency.

The Al agent categorizes the problem into one of several
domains (e.g., network issue, application server issue, or
database-related problem). The agent extracts structured
technical symptoms from user responses using seman-
tically guided summarization. Ambiguous or irrelevant
responses are filtered out, ensuring that only actionable,
technically relevant diagnostic information is retained.
Extracted symptoms are semantically matched against a
set of CVs. Each CV is assigned an initial confidence
score indicating the likelihood of it being a source of
misconfiguration. This structured output provides crucial
guidance for targeted diagnostic test selection.
Leveraging the semantic relationships between extracted
symptoms and known diagnostic commands, the Al
agent generates a structured diagnostic ticket containing
a prioritized list of recommended Linux diagnostic tests.
These recommended tests are categorized as described in
Section II-E, to guide targeted execution.

The structured output serves as the entry point for
ConfExp’s diagnostic engine, which executes targeted
tests and iteratively updates CV confidence scores to
identify likely root causes.

2)

3)

4)

5)

A. Overview of ConfExp

ConfExp [32] is a confidence-driven, test-based fault diag-
nosis framework developed to identify and localize misconfig-
urations in distributed enterprise environments. It works with
realistic Enterprise network topologies that include routers,
DNS servers, application and database servers, and multiple
subnets. Each subnet is assumed to be overseen by a Primary
Local Management Console (PLMC), with redundancy pro-
vided by a Secondary Local Management Console (SLMC). A
centralized Global Management Console (GMC) coordinates
fault detection and diagnosis across subnets (Figure 3).

Diagnosis in ConfExp is initiated by user complaints or
observed anomalies and proceeds across two interrelated
layers: service-level diagnosis, which targets application-
specific issues, and network-level diagnosis, which addresses
infrastructure-level faults such as routing or DNS errors. Each
potentially faulty CV is assigned a confidence score in the
range [—1, 1], where lower scores indicate higher suspicion.
At initialization, ConfExp identifies affected services and
compiles a corresponding set of relevant CVs and diagnostic
tests. These include widely available, non-intrusive commands
such as ping, traceroute, host, and netstat. Each
test is annotated with relevance scores to specific fault classes
using a domain-informed Test Relevance Matrix.

Diagnosis proceeds iteratively. In each iteration, the system
dynamically selects the most informative test using a strategy
that considers: (i) the test’s relevance to observed symptoms,

appl.temple.edu .

GMC Layer

LMC Layer

Lmc3 TA3

[iss2a7.0024 155.247.20028 155.247.3.024
Server Layer

EE B R

appl app2 nsl ns2 bB

Fig. 3: Network topology used in ConfExp [33].

(i) the number of CVs it can influence, and (iii) the current
confidence distribution across CVs. Tests are prioritized to
maximize diagnostic yield. After the test execution, confidence
scores for associated CVs are updated. Test outcomes are used
to update CV confidence levels according to the refinement
rule defined in Section II-F. This includes weighted updates
based on test relevance and the number of CVs associated
with each test. This process continues until either the score
of some CV drops below a predefined threshold (e.g., —0.6),
suggesting it is a likely root cause, or no remaining tests
offer meaningful diagnostic value. If all tests are exhausted
without a definitive diagnosis, the CV with the lowest negative
confidence is flagged for follow-up.

The PLMC continuously monitors local services and reports
anomalies to the GMC. To ensure fault tolerance, it period-
ically synchronizes with the SLMC. If the PLMC becomes
unresponsive, the SLMC autonomously assumes responsibil-
ity for diagnosis and monitoring, informing the GMC of
its role change and continuing operation until the PLMC
is restored. The GMC collects global state data by polling
PLMC and SLMC nodes, aggregates failure reports, and uses
cross-reference data to distinguish between localized faults
and broader systemic misconfigurations. The global visibility
provided by GMC is essential for correlating inconsistently
manifested failures across subnets.!

Service-level diagnosis targets faults such as database con-
nection issues or web application outages. In such cases,
ConfExp focuses on CVs like port bindings, service avail-
ability, or interface mismatches. For network-level faults (e.g.,
DNS failures, gateway misconfigurations, or routing loops)
it prioritizes diagnostic tools like host, dig, ping, and
traceroute, and analyzes CVs tied to DNS, firewall, and
routing configurations. A key distinction is that service tests
are often executed locally by the PLMC or SLMC whereas
network-level tests may span subnets and require cross-site
coordination by the GMC. For example, if a service is avail-
able in one region but not in another, the GMC uses such
discrepancies to infer a likely network misconfiguration.

Test execution is not fixed in order but dynamically guided
by a combination of factors: current CV confidence values,

! Although ConfExp does not implement a backup GMC, this is essential
and can be added easily.

test relevance, and expected information gain. This adaptive
strategy allows for rather efficient diagnosis with most mis-
configurations resolved within 4-5 tests and typically within
20 seconds.

B. Dialogue and Follow-up Generation

At the core of our Al agent lies a dialogue engine de-
signed to interactively elicit misbehavior symptoms from
users through follow-up questions. The engine is implemented
using the popular LLM Mistral-7B-Instruct, optimized for
instruction-tuned generation. Its primary function is to pro-
duce one informative follow-up question per turn, tailored
to the conversation’s context and aligned with the evolving
diagnostic hypothesis.

To structure the input for question generation, the agent
constructs a prompt by concatenating four components: the
internal instruction template I (e.g., “Ask one follow-up trou-
bleshooting question”), the current issue classification C' (such
as network, application, or database), the last k£ conversational
turns H (typically & = 5) to preserve context, and the user’s
most recent message U. Formally, we denote this as: Prompt =
concat(l,C, H,U). This structure ensures that the trans-
former model receives a contextually rich, task-specific input,
enabling it to generate coherent and diagnostically relevant
follow-up questions. The question generation process is au-
toregressive. At each timestep ¢, the model predicts the next
token y; conditioned on the preceding context and tokens,
Pyt | y1:t—1, X, I) = softmax (W, - Transformer(X, y1.4—1)),
where X represents the embedded input prompt, and W, is the
output projection matrix. The underlying transformer architec-
ture incorporates multi-head self-attention, feedforward layers,
and rotary positional embeddings (RoPE) to preserve word
order. To balance response diversity and relevance, nucleus
sampling with top-p = 0.9 and temperature 7' = 0.7 is applied
during generation. Each output is constrained to a maximum
of 60 tokens, with early stopping triggered by punctuation or
special tokens.

Given the variability of LLM outputs, not every generated
question is diagnostically useful. To address this, the engine
implements an iterative refinement process in which the model
generates a series of candidate questions—each independently
assessed through a multi-stage quality filter—until a diagnosti-
cally relevant and non-redundant question is accepted or a gen-
eration limit is reached. This filtering begins with vagueness
detection, using both regex pattern matching and semantic sim-
ilarity against a set of vague reference questions (e.g., “What
else can you tell me?”). Embeddings are computed using a
separate Sentence-BERT model (a11-MiniLM-L6-v2) [34,
35], rather than Mistral, as Sentence-BERT is optimized for
semantic similarity tasks and produces fixed-length embed-
dings suitable for cosine-based ranking. In contrast, Mistral is
a decoder-only generative model, making it less suitable for
efficient vector comparison across multiple candidates.

Next, lexical redundancy is evaluated using Jaccard simi-
larity between the candidate (., and each previously asked
queStion Qprev [36] J(QneW7 Qprev) = %gz:l A candidate

is rejected if J > 0.7, indicating excessive word overlap.
Structural similarity is then computed using normalized Leven-
shtein distance [37]: L(Quew; Qprev) = %, where
D(-) denotes the character-level edit distance. Candidates with
L < 0.2 are deemed structurally repetitive. Lastly, seman-
tic redundancy is assessed using cosine similarity between
Sentence-BERT embeddings [38, 34]: Scosine (@new, Qprev) =
HQQ#%':E” Any question with S¢osine > 0.8 is considered
semantically overlapping and is excluded. All thresholds were
selected through empirical tuning on a validation dataset to
balance redundancy filtering with question diversity. Filtering
occurs immediately after each generation attempt and before
adding the accepted question to the dialogue history.

If no candidate passes filters after attempts, the system
activates a fallback mechanism. This module selects a rel-
evant question from a curated, domain-specific pool based
on the current issue category. Each fallback candidate is also
validated against user responses to avoid contradictions. For
example, if a user has already indicated that other devices are
unaffected, the agent will not repeat questions about multi-
device impact. In our experiments across 75 fault scenarios,
fallback questions were triggered in approximately 8.4% of
follow-up turns (i.e., 32 out of 375 total generated questions),
typically when the LLM produced vague or redundant outputs.
These fallbacks preserved the dialogue flow and ensured no
user turn was left unanswered.

The dialogue engine includes a dynamic scope control
mechanism that determines whether to continue probing a
focused diagnostic hypothesis or broaden the investigation to
other potential causes. This behavior is governed by a contex-
tual similarity metric between the newly generated question
@rew and the prior dialogue history H, formalized as:

Expand scope, if S¢(Qnew; H) > 04

dex and —
P otherwise

Continue focus,
Here, S. denotes the cosine similarity between the new ques-
tion and recent questions, computed using sentence embed-
dings. A high similarity score suggests that the new question
repeats or stays too close to existing content, signaling dimin-
ishing returns. In such cases, the system opts to expand scope
to cover alternative hypotheses. Conversely, when similarity
is low (i.e., the new question probes a distinct aspect) the
engine interprets it as diagnostic diversification and continues
focusing on the same general line of inquiry. For example,
if earlier questions involved DNS connectivity (e.g., “Can
you access other websites?”), and the model proposes “Did
you try checking with 8.8.8.8 directly?”, the high similarity
prompts the system to shift topics. On the other hand, if the
new question shifts toward firewall rules or local configuration
(e.g., “Is your firewall blocking outbound traffic?”), the low
similarity allows continued refinement within the expanded
hypothesis space. Questioning continues until one of the
following conditions is met: five high-quality questions have
been accepted; a predefined confidence threshold is reached
for one or more CVs; or the user explicitly ends the session.

Once the dialogue concludes, all gathered information is
passed to downstream components for symptom extraction,
CV relevance scoring, and trouble ticket generation.

C. Symptom Extraction

Once the dialogue engine concludes the questioning phase,
the system proceeds to extract a technically meaningful symp-
tom set from the collected conversation. The goal of this stage
is to isolate and summarize user-provided information that is
directly relevant to fault localization while filtering out vague,
redundant, or conversationally irrelevant content.

The extraction process operates over the structured dialogue
history, which consists of alternating pairs of Al questions
and corresponding user responses. For each Al-user pair, the
user response is analyzed to determine whether it provides any
concrete diagnostic signal. Only responses that convey tech-
nically actionable content — such as references to connectivity
failures, error messages, service availability, latency, authenti-
cation issues, or system behavior anomalies — are retained. To
identify symptom candidates, the Al agent uses an instruction-
tuned model conditioned on the full Al-user dialogue history
presented in a structured question—and—answer format. The
instructions are designed to extract only concrete technical
indicators while explicitly avoiding inferred or unverifiable
content not mentioned by the user. Each candidate symptom
is then subjected to a semantic deduplication step using the
cosine similarity method described in Section II-B. Sentence
embeddings are computed for all symptom entries, and pairs
with high semantic overlap (similarity > 0.9) are considered
redundant, only one is retained. This threshold is intentionally
conservative to ensure that only near-verbatim or semantically
identical descriptions (e.g., “the website doesn’t load” vs.
“unable to open the webpage”) are merged.

While this may seem contradictory to the earlier scope-
expansion logic, where high similarity between follow-up
questions triggers broader inquiry, it serves a complemen-
tary purpose. In the dialogue phase, high similarity indi-
cates saturation and prompts topic diversification. In contrast,
during symptom extraction, the high similarity between user
responses signals redundancy and justifies consolidation. This
separation ensures the dialogue remains exploratory while the
resulting symptom set is concise and technically focused.

To further improve precision, we apply an optional semantic
filtering pass that removes low-information patterns, such
as vague phrases like “something is wrong™ or “it’s not
working®, unless they are accompanied by specific contextual
details (e.g., “it’s not working when I connect to the VPN”).
While such entries may eventually be excluded during trouble
ticket generation, removing them earlier helps streamline the
symptom set, reduce noise in the CV relevance scoring phase,
and avoid unnecessary dilution of symptom embeddings. This
preemptive filtering improves both the interpretability and
semantic sharpness of the extracted symptom vector, thereby
enhancing downstream confidence estimation and test priori-
tization.The final output of this stage is a ranked and dedupli-
cated list of technically specific user-observed symptoms. This

Algorithm 1: Dialogue-Driven Symptom Collection

Algorithm 2: CV Confidence Scoring

Input: Initial user input ug
Output: Dialogue history H, symptom set .S
1 Classify issue type: ¢ = felassity (40);
2 Initialize: H < [uo], ¢ < 0;
3 while ¢ < gmax do
4 Qq <*fask(cyl—l);
5 if valid(Qq) then
6 | Append Qq, user reply Ag to H; q < q+1;
7 S+ fsympwms(H)§
8 return H, S

list serves as the input for the CV mapping module and guides
the system’s next steps in estimating the relevance and con-
fidence of potential misconfigurations. Because this symptom
set reflects both user-specific context and dynamic dialogue
evolution, it allows the system to perform personalized and
targeted diagnostics beyond what rule-based systems could
achieve with static logs or structured templates. The user-
interactive elicitation pipeline is summarized in Algorithm 1.
To better understand system behavior, we consider two
edge cases: (a) when the user provides the correct symptom,
the system adjusts CV confidence accordingly and converges
efficiently; and (b) when the user provides only irrelevant
symptoms, the system relies more heavily on system-level
tests. In both cases, the confidence refinement process still
leads to the correct diagnosis, albeit with more steps in case
(b). These scenarios are explored further in Section III-B.

D. Mapping to Configuration Variables (CVs)

After extracting structured, semantically filtered technical
symptoms, the system proceeds to estimate which CVs are
most likely implicated in the reported issue. This estimation
step transforms unstructured symptom narratives into a struc-
tured belief distribution over CVs, which serves as input to
the test prioritization and root-cause isolation phases.

Let S = {s1,82,...,8,} denote the set of user-reported
symptoms, and let C = {cy, ca, ..., ¢y} represent the full set
of known CVs relevant to the enterprise diagnostic domain.
Each CV corresponds to a network- or service-level config-
uration entity, such as interface IP, DNS entry, port number,
default gateway, or application-specific parameter. The goal
is to infer an initial confidence score for each c; € C based
on its semantic alignment with the aggregated user symptom
set. To map the extracted symptoms to relevant CVs, we use
the cosine similarity metric as described in Section II-B. Both
the aggregated symptom description and each candidate CV
are embedded into a shared semantic space using a sentence
embedding model (Sentence-BERT).

Let S = {s1, 82,...,Sn} be the set of extracted symptoms,
and C = {c1,¢2,...,¢n} the full CV set. We compute a
combined symptom embedding vector vg and compare it
with each CV embedding v;. The cosine similarity score o
quantifies semantic alignment between S and each c;. We then
assign each CV an initial confidence value:

-)—a-o0j, ifo; >0
= 0, otherwise

Input: Symptom set S, CV set C
Output: Initial confidence scores -y

1 vg < embed(sy Usa U---Usyp);
2 Let R CC;
3 foreach c; € R do
. X VS U4 .
4 v;j < embed(c;); oj 7”1}5“.”%” ;

n

if (o; > 0) then v(cj) + —a - 0j; else y(c;) « 0;
6_return y

where 0 € (0,1) is a similarity threshold and « is a tunable
penalty coefficient. CVs with higher semantic similarity to the
symptoms receive more negative initial scores, indicating a
stronger suspicion of misconfiguration.

E. Diagnostic Test Suggestion and Categorization

The result of this process is a structured diagnostic ticket:
a machine-readable object containing the issue type, extracted
symptoms, initial CV confidence scores, and a categorized,
prioritized list of diagnostic commands. This ticket serves as
the standardized hand-off point between the Al agent and
the ConfExp engine. Test generation is performed by an
instruction-tuned model conditioned on a structured represen-
tation of the extracted symptoms. The model is constrained
to emit only Linux-compatible, read-only commands (e.g.,
ping, traceroute, curl) that do not alter the system
state. While initial outputs may include justifications, post-
processing retains only the executable commands.

Each suggested command and the aggregated symptom set
are embedded into a shared semantic space using a Sentence-
BERT encoder. Cosine similarity between the symptom em-
bedding and each command embedding is used to rank can-
didates by contextual relevance. Let T = {t1,t2,...,tk}
be the generated commands and ¥s the embedded symp-
tom vector. The top n commands selected for execution are
T'" = Top,, ({(ti,cos(¥s,%;)) | t; € T}), where n = 5 by
default and #; = embed(t;). Commands are then classified
into three categories, Al-only, intersection, and system-only,
by comparing them against the ConfExp test suite. Each Al-
generated command is normalized to its base executable (e.g.,
ping, ifconfig) and matched against ConfExp’s predefined
system diagnostics. This process determines overlap: Al-only
commands appear exclusively in the Al output, system-only
tests are native to ConfExp but not suggested by the Al, and
intersection tests are shared between both. This matching fa-
cilitates later prioritization during execution, without implying
that system tests are derived from the Al agent. Let A and S be
the AT and system test sets. Then, Al-only: A\ S, Intersection:
ANS, and System-only: S\ A. Algorithm 3 summarizes test
selection and confidence refinement.

F. ConfExp Integration

The Al-generated ticket is passed to ConfExp’s execution
engine, which performs a confidence-guided diagnostic se-
quence using the mechanisms outlined in Section II-A. This
section describes how ConfExp prioritizes and executes tests

Algorithm 3: Test Suggestion and Confidence Update

Algorithm 4: Integration of AI Agent with ConfExp

Input: Symptom set S, initial scores ~y
Output: Final ticket 7, updated ~y

1 Generate test set: T' < fests(S);
2 Select top-n: T” < Top,, (T');
3 Let A + base(T”), S + SystemTests;
4 Categorize:
Al-only = A\ S, Intersection =.ANS, System-only =S\ .A

7+ (¢, S, T’,, categories);
foreach t; € T’ do
Run t;, obtain result 7;;
foreach c; € CVs(t;) do
| Aes) — vles) +6(riycp):
return 7,y

RN T N

based on the ticket and how it determines when to terminate
a diagnosis. Each diagnostic test ¢; is associated with a subset
of CVs, denoted CVs(t;) C C, and a diagnostic weight w;.
When a test is executed, the confidence score 7; of each
associated CV ¢; is updated based on the outcome. A passing
test increases the confidence score (indicating the CV is less
likely to be faulty), while a failing test decreases it. This update
rule, detailed in Section II-A, distributes the diagnostic signal
across all CVs implicated by the test and drives the system
toward convergence through accumulating evidence.

Test execution follows some order among these three types
of tests: (1) Al-only tests, (2) intersection tests, and (3) system-
only tests. We will evaluate the effectiveness of each of the six
different orders.After executing the Al-only and intersection
test phases, ConfExp checks for early termination based on
two criteria. First, the system halts if there exists exactly one
CV ¢; such that v; < 7 and all other CVs ¢, € C\{c;} satisfy
~vr > 0, where 7 is a threshold confidence value (typically
—0.6). This indicates that a single CV is strongly implicated,
while the rest are cleared of suspicion. The value of 7 has
been empirically tuned to balance fault isolation accuracy and
false positive suppression, as previously described in [32].

Second, ConfExp applies an early exit condition if at least
half of the executed diagnostic tests have passed. Formally, if
[{t; € Texecuted | Ti = pass}| > ‘T“Qi““’l the system concludes
that the environment is likely healthy and halts further diagno-
sis. This behavior is particularly useful for handling spurious,
transient, or nonexistent faults; for example, when the user
complaint does not correspond to an actual misconfiguration.
In such cases, if no CV accumulates a sufficiently negative
confidence score and the majority of test outcomes are non-
indicative of faults, the system conservatively terminates and
flags the complaint as unverifiable. This safeguard ensures
diagnostic efficiency even when the input is vague, misleading,
or fabricated.’

If neither early termination condition is satisfied, i.e., multi-
ple CVs remain moderately suspicious or confidence values are
inconclusive, the system continues with system-only tests. As
outlined in Section II-A, these tests are not executed in a fixed
order; instead, ConfExp dynamically selects the next test based

2An enterprise will invariably authenticate and log the reporting user;
therefore, diagnosis as a DoS attack mechanism is highly unlikely.

Input: CV set C, test sets Tar, Tint, Tsys, initial scores -y, threshold 7
Output: Final CV scores <y, suspected misconfigurations
1 foreach t; € Ty; U Ty, do
Run ¢;, obtain result r; € {pass, fail};
Let CVs; < CVs(t;), w; — weight(t;);
foreach c; € CVs; do
if (r; = pass) then v(c;) < v(¢j) + w; /|CVs;;
else v(c;) < v(cj) — wi/|CVss;
if 3! c; such that v; < 1 and Vey, # ¢j,7y, > 0 then
| return +, flag c; as root cause;
if |[{t; € Torecutea | 7i = pass}| > |T““§"”“’ | then
10 ‘ return -y, halt: system likely healthy or false alarm;
u foreach t; € T, do
Run t¢;, obtain result T
Update using same rule as above;
14 return Final CV scores vy, all c; with v; < T

2
3
4
5
6
7
8
9

on its diagnostic weight, association with currently suspect
CVs, and its potential to shift confidence scores meaningfully.
This adaptive strategy enables ConfExp to focus on tests with
the greatest likelihood of resolving ambiguity and driving
convergence.

Diagnosis concludes once either a CV’s confidence falls
below the misconfiguration threshold 7, or no remaining
tests are expected to significantly influence the confidence
distribution. The final diagnostic output includes updated
confidence scores for all CVs, the full sequence of executed
tests and their pass/fail results, and a ranked list of suspected
misconfigurations to guide remediation efforts. This process
is formally summarized in Algorithm 4, which reflects the
integration of Al-guided and system-based testing, early exit
logic, and iterative confidence refinement.

G. Related Work

Fault detection and localization have been extensively stud-
ied for both hardware and software systems. Traditional net-
work monitoring tools like SNMP [39], NETCONF [40], and
Nagios [41] primarily focus on centralized health monitor-
ing and alerting based on device-level events. These tools,
however, do not directly address detailed diagnostics at the
CV level or systematically evaluate dependencies and con-
figurations across services, which are crucial in identifying
misconfigurations.

Conversational Al systems have been explored to stream-
line initial troubleshooting by interactively clarifying am-
biguous user complaints [26, 27, 22]. These systems lever-
age LLMs capable of interpreting and structuring ambiguous
inputs [23, 24, 21]. A typical conversational AI pipeline
includes natural language understanding (NLU) to extract
structured data from user inputs, dialogue state tracking (DST)
to maintain context, policy learning modules (PLU) for deter-
mining subsequent actions, and natural language generation
(NLG) for responses [42, 23]. Some approaches utilize self-
dialogue techniques to refine extracted information [43], while
retrieval-augmented generation (RAG) has been suggested
to improve specialized Q&A capabilities [22]. Intent-Based

Networking (IBN) allows expressing network intentions in nat-
ural language, significantly benefiting from advancements in
LLMs [44, 45, 46]. Although somewhat similar, our approach
focuses explicitly on interactive symptom elicitation combined
with structured, confidence-driven diagnostic execution.

Several recent works propose automated diagnosis tech-
niques using Bayesian inference [47, 48], entropy approx-
imation [49], and adaptive probing [48, 50, 51]. However,
these methods often rely on abstract models or predefined de-
pendency relationships rather than dynamic, conversationally
derived information. In contrast, our approach integrates in-
teractive conversational Al with systematic, confidence-driven
diagnostic tests to directly handle real-world misconfiguration
diagnosis at the CV level, which, to the best of our knowledge,
has not been fully explored in prior works.

III. EVALUATION

We evaluate the system’s ability to identify misconfigured
CVs, focusing on Al-initialized confidence, test ordering, and
execution strategy, with a case study illustrating confidence
updates and early termination.

A. Experimental Setup

We evaluate our integrated diagnostic framework using a
combination of emulated enterprise environments and LLM
inference deployed on a high-performance infrastructure. To
simulate realistic IT environments, we use the SEED emula-
tor [52], which provisions DNS, web servers, databases, and
application services inside Docker-based containers connected
through configurable subnets and routing domains. Hosts are
configured with realistic system files, service dependencies,
and monitoring agents. Misconfigurations are introduced by
altering network settings (e.g., subnet masks, gateways), DNS
records, firewall rules, port bindings, or authentication poli-
cies. Note that while the misconfigurations are necessarily
deliberate for evaluation purposes, none of the monitoring and
diagnosis procedures have any knowledge of or dependence on
the injected fault. However, the user-reported problems must
refer to an abstractly described problem resulting from the
misconfiguration.To reflect real-world usage, each misconfig-
uration is paired with a natural language complaint written to
mimic plausible end-user input. These complaints are derived
by observing the operational impact of the misconfiguration
(e.g., “I can’t reach any websites,” or “The app fails to connect
to the database”) and avoid revealing internal fault details.
The AI agent processes each complaint through interactive
questioning, extracts symptoms, and generates test recommen-
dations that feed into the ConfExp engine.

LLM-based components, including Mistral-7B-Instruct for
question generation and Sentence-BERT for semantic simi-
larity, are deployed on the ACES high-performance cluster
at Texas A&M University. We use Intel Data Center GPU
Max 1100 (PVC) nodes with SLURM-based container orches-
tration, following ACES best practices [53]. Each diagnostic
session runs in isolation, and all test execution occurs within
the emulated environment. We evaluate the system across

75 curated fault scenarios spanning diverse categories of
misconfigurations, including 25 network-layer issues (such
as misconfigured IP addresses, broken gateways, and DNS
failures), 25 application/server misconfigurations (such as in-
correct URLs, unreachable ports, and crashed services), 15
database-related faults (including blocked ports, authentication
failures, and unreachable database endpoints), and 10 multi-
layer composite faults that span both infrastructure-level (e.g.,
IP, DNS, routing, or firewall rules) and application-layer (e.g.,
server responsiveness, SSL, or port bindings) components. A
breakdown of fault types is provided in Table I.

TABLE I: Distribution of Fault Scenarios by Category.

Fault Type Number of Scenarios
Network-layer misconfigurations 25
Application/server misconfigurations 25
Database connectivity/configuration errors 15
Multi-layer composite faults 10
Total 75

For each scenario, the system turns complaints into diag-
nostic tickets, executes tests via ConfExp, and tracks CV confi-
dence, coverage, and convergence. Results are in Section III-B.

B. Experimental Results

We evaluated the diagnostic performance of our system
across all emulated enterprise fault scenarios, each involving
natural language user complaints that were converted into
structured trouble tickets, test recommendations, and auto-
mated diagnostic execution via ConfExp. Our analysis focuses
on how the Al-assigned initial confidence levels (y;) and the
sequence in which tests are executed affect the system’s ability
to efficiently and accurately localize misconfigurations.

To initialize CV confidence values, the system uses seman-
tic similarity scores between extracted user symptoms and
candidate CVs, scaled by a tunable factor «. Specifically,
for each relevant CV c;, the initial confidence is computed
as 7, = —a - 04, where o; is the cosine similarity score.
We tested three values of a € {0.1,0.2,0.3} to study how
strongly initial suspicion influences diagnostic behavior. Each
configuration was evaluated using three key metrics: (1) ac-
curacy: the percentage of scenarios where the correct CV
was ultimately identified (including ties); (2) false positives:
the percentage of cases where an incorrect CV crossed the
threshold before the correct one; and (3) average number
of tests to result. Although we do not observe conventional
false negatives, i.e., cases where the correct misconfiguration
is missed entirely, even in scenarios where the user’s initial
symptom description does not align with the actual fault, the
system still successfully identifies the true faulty CV. However,
doing so requires more diagnostic tests and longer execution
times, as the initial confidence estimates are skewed toward
irrelevant variables. In these cases, the system recovers by
leveraging its confidence refinement loop and broader system-
defined tests, which eventually suppress incorrect hypotheses
and converge on the true root cause. Thus, while accuracy
remains high, test efficiency degrades under incorrect user
input, as detailed in Section III-B and illustrated in Figure 7.

100% 65,
9 80% 52
- -3
& 60% N 2
£ 3g
o
s 40% 2 é
& 20% 1 ;ﬂ
I
0% 0
-0.1 -0.2 -0.3
@ Accuracy 73% 93% 87%
O False Positives 27% 7% 13%
O Avg. Tests to Result ~ 4.87 3.21 1.93

@ Accuracy [False Positives [Avg. Tests to Result

Fig. 4: Impact of coefficient & on CV diagnosis performance.

TABLE II: Description of Test Ordering Strategies

Execution Order

Al Agent—Only — Intersection — System-Only
Intersection — Al Agent—Only — System-Only
System-Only — AI Agent—Only — Intersection
System-Only — Intersection — Al Agent—Only
Intersection — System-Only — AI Agent—Only
Al Agent—Only — System-Only — Intersection

Strategy

| m| O] O | >

As shown in Figure 4, a moderate value of o = 0.2 yielded
the best trade-off: 93% accuracy, only 7% false positives, and
an average of 3.21 tests. A lower value (o = 0.1) led to weaker
initial suspicion, resulting in more tests (4.87 on average) and a
27% false positive rate due to slow convergence. Conversely,
an aggressive setting (o = 0.3) shortened diagnostics (1.93
tests) but increased false positives to 13%, as the system
prematurely committed to incorrect CVs. We limited the range
of « values to these three settings based on prior empirical
tuning. Values below 0.1 delayed diagnosis too significantly
to be practical, while higher magnitudes (> 0.3) consistently
caused instability and misclassification during pilot runs. Thus,
the selected range reflects a practical spectrum of initialization
strengths that preserve test-driven refinement without biasing
the system toward early misjudgment.

Beyond confidence initialization, diagnostic performance
also depends on the sequencing of test execution. We evaluated
six distinct test ordering strategies that vary the execution
order of Al Agent-Only, Intersection, and System-Only test
categories. As summarized in Table II, these strategies reflect
different prioritization philosophies, ranging from symptom-
driven (Al-first) to purely system-defined approaches.

Figure 5 presents the aggregate performance of each strategy
across all 75 fault scenarios, measured by accuracy, false
positive rate (FP), and average tests to result. Strategy A,
prioritizing symptom-aligned (AI) tests, achieved the best
overall performance: 92.86% accuracy, 7.14% false positives,
and only 3.21 tests per scenario. In contrast, Strategies C and
D, which start with System-Only tests, performed significantly
worse—requiring over 9 tests on average and exhibiting the
highest FP rates (21.43%). Intermediate strategies, such as B
and E (which front-load consensus or mixed tests), showed
moderate gains in accuracy but failed to reduce test overhead.
Notably, Strategy F matched Strategy A in accuracy but re-
quired 60% more tests, demonstrating that deferred consensus
testing delays early exits without improving results. These

100%

12

80% 10 S

8 o

60% 6 2

40% 2 E

b

20% 2 °

-0

0% 0z
A B C D E F
[Accuracy (%) 93% 86% 79% 79% 93% 93%
O FP Rate (%) 7% 14% 21% 21% 7% 7%
O Avg. Tests to Result 3.21 4.57 9.57 9.79 9.93 5.21

Axis Title

M Accuracy (%) [FP Rate (%) @ Avg. Tests to Result

Fig. 5: Diagnostic performance across six test strategies.

Al-Generated Trouble Ticket (VPN Issue)

Timestamp: 2025-04-03 21:18:45
Issue Type: Network Connectivity
Symptoms Reported:

e VPN drops frequently when connected to local Wi-Fi
e VPN is stable when using LTE
o Other network services remain unaffected
o Wi-Fi signal is weak, but connected
Initial Confidence Levels:
o mtu: —0.19,
AlI-Generated Diagnostic Tests:

interface: -0.15, ip:-0.10

e xifconfig, xping —-s 1400 8.8.8.8, xmtr 8.8.8.8,
*ip route
Test Categorization:
e AI-Only: xmtr 8.8.8.8, *ping —-s 1400 8.8.8.8
o Intersection: xifconfig, xip route
o System-Only:
— Name Resolution: +host google.com
— Reachability: xtraceroute 8.8.8.8,
8.8.8.8, xip addr, »netstat -i
— Firewall and Services: xiptables -L -v, *netstat
—tulpn, *telnet vpn.server.com 1194

*nmap

Fig. 6: Example of an Al-generated trouble ticket'.

findings underscore the value of aligning initial test execution
with user-expressed symptoms to enable early convergence
and minimize unnecessary probes.

Case Study: To illustrate how test sequencing and con-
fidence dynamics influence diagnostic outcomes, we present
a scenario involving intermittent VPN connectivity. The user
reported frequent VPN drops over Wi-Fi, while connections
over LTE remained stable. Based on semantic similarity to
the complaint, the AI agent initialized three CVs, mtu,
interface, and ip, with confidence values of Ypn =
—0.19, Yinterrace = —0.15, and 7;, = —0.1. The miscon-
figuration involved the mtu parameter, which was eventually
isolated through targeted test execution. The structured diag-
nostic ticket generated by the Al agent, detailing initial scores,
test suggestions, and categorization, is shown in Figure 6, and
served as input to the ConfExp diagnostic engine. During
diagnosis, confidence values were updated according to the
rule in Section II-A. For instance, a test like ping —-s 1400,
which exclusively targets mtu, had a larger per-CV impact
than a test like 1 fconfig, which affects multiple variables.

TABLE III: Strategy A

In Strategy A,
th tem beean Test Result | New CLs

.e syste cga ifconfig Fail | interface = -0.35, mtu
with Al-suggested =-0.39, ip = -0.30

tests that were ping -s 1400 | Fail | mtu = -0.6
highly aligned with

the user’s symptoms (Table III). The i fconfig test, which
failed, reduced the confidence of all three CVs, and the
subsequent failure of ping —s 1400 drove the confidence
of mtu precisely to the threshold value of —0.6. As the other
CVs remained above zero, the early termination condition was
satisfied, and the diagnosis concluded after only two tests.
Strategy F (Table VI, which followed the same test sequence,
also reached early termination with identical efficiency.

Strategy B

(Table V) TABLE IV: Strategy B

t(?Ok a shghtly Test Result | New CLs

different path, ip route Pass |ip = 0.0, interface =

beginning with -0.05

h inter ion ifconfig Fail | interface = -0.25, mtu

the . tersectio 22039, ip = 020

test ip route, [Hing 51400 Fail |mtu = 0.6

which passed mtr Fail [ip = -0.40

and increased the netstat -i Pass | interface = —0.05
traceroute Fail |ip =-0.50

confidence of ip
and interface. Although this delayed the degradation
of those variables, the following two tests (ifconfig
and ping -s 1400) succeeded in pushing mtu to the
threshold. Thus, this strategy also triggered early termination,
albeit with an extra test step.

In contrast, Strategies C, D, and E (Table VI) began with
system-defined tests unrelated to the user’s symptoms. These
sequences involved broader diagnostics like host, nmap, and
ip addr, which primarily targeted dns, port, or general
interface properties. As a result, confidence in mtu declined
more gradually and never reached the threshold of —0.6, even
after 12 diagnostic steps. However, since mtu ended with
the most negative confidence among all CVs (approximately
—0.5), it was still selected as the most likely root cause.
This fallback mechanism enables convergence even when the
termination condition is not met, but at the cost of additional
test overhead and slower resolution compared to Al-prioritized
strategies.

This case study demonstrates two core benefits of the pro-
posed approach. First, semantically driven initialization allows
the system to front-load suspicion onto symptom-relevant vari-
ables. Second, test ordering is crucial for diagnostic efficiency:
Al-prioritized strategies apply early, high-impact probes that
rapidly isolate the root cause and minimize overhead, whereas
system-centric approaches dilute diagnostic power across less
relevant tests and delay convergence.

To assess the robustness of our diagnostic system under
imperfect conditions, we simulated a scenario where the user’s
report described symptoms unrelated to the true underlying
issue. Instead of describing intermittent VPN drops, the user

INewlines compressed to save space, “*”
command.

indicates the start of a diagnostic

Confexp works best when users make
incorrect complalnts

I | n

E F
] Mlsleadmg Initial Complaint
@ Correct Initial Complaint

=
o

Number of Tests
(%]

Fig. 7: Impact of Initial Complaints on Diagnostic Tests.

complaint indicated general performance issues after VPN re-
connect (e.g., “VPN slow after reconnect, website slow”). Con-
sequently, the Al agent initialized incorrect CVs (interface
= —0.15, port = —0.1) and suggested irrelevant tests tar-
geting ip, url, and port, missing the actual root cause
(mtu). Despite this faulty initialization, the system still cor-
rectly diagnosed the misconfigured mtu across all strategies,
although with increased overhead. For example, under Strategy
A, the Al-issued tests (curl, ping, traceroute) initially
boosted confidence in ip and url while leaving mtu un-
touched. It wasn’t until deeper into the system-defined test
phase that tests like ifconfig and ip addr revealed the
actual misconfiguration. All strategies eventually converged on
mtu, but none achieved early termination because the incorrect
initialization caused other CVs to accumulate positive scores,
violating the termination condition.

Figures 8(b) and 7 illustrate the system’s behavior in two
edge cases: (a) when the user provides accurate symptoms,
and (b) when the user provides misleading or unrelated
symptoms. In case (a), Strategy A required only 2 tests to
isolate the fault; in case (b), the same strategy needed 12
tests due to incorrect initial confidence estimates. Despite
the added overhead, the system consistently converged to
the correct root cause (mtu) in all cases. This underscores
two core strengths: (1) symptom-aware initialization improves
efficiency and Al-informed strategies (e.g., A, F) perform well,
and (2) confidence-guided testing enables robust diagnosis
even under noisy or incorrect user complaints.

To further analyze the role of semantic alignment in Al-
guided initialization, we repeated the VPN diagnosis experi-
ments under a fixed confidence setup. In this setting, each CV
that matched a user-reported symptom was assigned a constant
confidence value of 7; = —0.2, without cosine similar-
ity—based weighting. This simplification removes fine-grained
distinctions between closely and loosely aligned symptoms.
Figure 8(c) summarizes the diagnostic outcomes for correct
initial user complaints. Most strategies remained correct but
saw no benefit in test efficiency. Notably, Strategy B misiden-
tified ip as the faulty variable in the correct complaint case,
despite the ground truth being mtu. This occurred because
all matched CVs were initialized equally, allowing irrelevant
variables to dominate after early false test signals. Figure 8(a)
further visualizes the number of tests required in each strategy.
The bars reveal that removing semantic scaling does not

TABLE V: Strategies C, D, and E.

Strategy C Strategy D Strategy E
Test Result | New CLs Test Result | New CLs Test Result | New CLs
host Pass | dns = +0.2 host Pass | dns = +0.2 ip route Pass |ip = 0.0, interface =
traceroute Fail |ip =-0.20 traceroute Fail |ip =-0.20 -0.05
nmap Pass |ip = 0.0, port = +0.2 nmap Pass |ip = 0.0, port = +0.2 host Pass | dns = +0.2
ip addr Pass | interface = —0.05, mtu ip addr Pass | interface = —0.05, mtu traceroute Fail |ip =-0.10
=-0.09 =-0.09 nmap Pass | ip = +0.1, port = +0.2
iptables Pass | — iptables Pass | — ip addr Pass | interface = 0.05, mtu
telnet Pass | port = +0.4 telnet Pass | port = +0.4 =0.01
netstat -i Pass | interface = +0.15 netstat -i Pass | interface = +0.15 iptables Pass | —
netstat -tulpn | Pass | port = +0.6 netstat -tulpn | Pass | port = +0.6 telnet Pass | port = +0.4
ifconfig Fail | interface = —0.05, mtu ip route Pass |ip = +0.1, interface = netstat -i Pass | interface = +0.25
=-0.29, ip = -0.20 +0.25 netstat -tulpn | Pass | port = +0.6
ping -s 1400 | Fail |mtu = -0.5 ifconfig Fail | interface = +0.05, mtu ifconfig Fail | interface = +0.05, mtu
mtr Fail |ip =-0.20 =-0.3, ip = -0.10 =-0.2,ip = 0.0
ip route Pass | ip =-0.10, interface = ping -s 1400 | Fail |mtu = -0.5 ping -s 1400 | Fail |mtu = -0.4
+0.05 mtr Fail |ip =-0.10 mtr Fail |ip =-0.10
12 Strategy | Misleading Complaint | Correct Complaint Stra- | Tests | Tests Cv CvV
210 Wrong CV Tests CV Tests CV tegy | Fixed | Scaled | Scaled | Fixed
3 detected: P A 12 mtu 2 mtu A 12 2 mtu | mtu
= 8 address s
s % B 12 mtu 6 mtu B 12 6 ip mtu
5 6 C 12 mtu 12 mtu C 12 12 | mw | mw
'g 4 D 9 mtu 12 mtu D 9 12 mtu mtu
3 E 12 mtu 2 mtu E 12 2 mtu mtu
= z ,—‘ H ’—| F 9 mtu 12 mtu F 9 12 mtu mtu
A B C D E F

Tests Run (Correct Initial User Complaint)

Fig. 8: (a) Diagnosis Performance Without Semantic Similarity (Left). (b) Effect of Misleading vs. Correct User Complaints
(Middle). (c) Impact of Cosine-Scaled vs. Fixed Initial Confidence Values (Right).

TABLE VI: Strategy F

TABLE VII: Diagnostic Test Counts and Metrics by Scenario.

Test Result | New CLs Approach / Metric | Scen. 1 | Scen. 2 | Scen. 3 | Scen. 4 | Scen. 5 | Total

ifconfig Fail | interface = —0.35, mtu = —0.39, ip = —0.30 Expert 1 2 9 15 8 8 42

ping -s 1400 | Fail | mtu = -0.6 Expert 2 2 9 10 8 5 34
Expert 3 2 11 9 6 8 36

Expert 4 2 9 8 12 4 35

. . . . Expert 5 2 9 8 12 4 35

alwa{y§ 1ncrease.the test cogr{t.but can compromise d%agnos.tlc Céﬁ?‘éxp 2] 4 1 5 30
precision, especially when initial test results create misleading | ConfExp+Al 2 3 3 5 5 18
trends. Strategy A and F remained efficient and accurate, while | Necessity % 100 | 100 80 100 | 83.3 1 927
Coverage % 100 100 100 100 100 100

B was particularly vulnerable to misclassification.

In addition to automated comparisons, we evaluated our
system against manual diagnosis by human experts, since
prior abstract fault models do not directly handle CVs or
realistic tools like t raceroute and ping. Five experienced
administrators were given the same initial issues reported to
ConfExp+Al Agent without access to follow-up Al inter-
actions. We simulated their diagnostic flowcharts to count
required tests. Table VII summarizes these results across
five realistic misconfiguration scenarios. ConfExp+Al required
significantly fewer tests (18 total) compared to standalone
ConfExp (30) and human experts (average 36.4). Particularly,
in Scenario 3 (firewall misconfiguration), ConfExp+AlI identi-
fied the issue with only 3 tests, versus up to 15 tests by human
experts. We assessed efficiency using two metrics: Necessity
(minimum required tests versus those used) and Coverage
(correct identification regardless of test count). ConfExp+AlI
achieved 100% coverage across all scenarios, consistently out-
performing manual diagnosis in both efficiency and accuracy.

IV. CONCLUSION

We introduced an Al-driven framework that integrates large
language models with a confidence-based diagnostic engine
(ConfExp) to automate trouble ticket generation and miscon-
figuration diagnosis in enterprise environments. The system
converts natural language complaints into structured symptom
sets, estimates likely faulty CVs, and generates targeted test
plans. Evaluation across 75 fault scenarios showed that the
system achieved 93% accuracy while reducing diagnostic tests
by up to 47% compared to using ConfExp alone. It remained
robust even when user input was vague or misleading, and
consistently outperformed manual diagnosis by experts in both
efficiency and completeness. Future work includes integrating
retrieval-augmented generation (RAG) to leverage past diag-
nostic sessions, incorporating service-dependency models for
correlated faults, and supporting multi-fault diagnosis through
parallel test paths.

10

REFERENCES

[1] Jez Humble and David Farley. Continuous delivery:
reliable software releases through build, test, and de-
ployment automation. Pearson Education, 2010.

[2] Tianyin Xu and Yuanyuan Zhou. Systems approaches to

tackling configuration errors: A survey. ACM Computing

Surveys (CSUR), 47(4):70, 2015.

Suranjith Ariyapperuma and Chris J Mitchell. Security

vulnerabilities in dns and dnssec. In The Second In-

ternational Conference on Availability, Reliability and

Security (ARES’07), pages 335-342. IEEE, 2007.

Asadullah Shaikh, Bhavika Pardeshi, and Faraz Dalvi.

Overcoming threats and vulnerabilities in dns. In Pro-

ceedings of the 3rd International Conference on Ad-

vances in Science & Technology (ICAST), 2020.

[5] Gartner. Gartner Identifies the Top Cybersecurity Trends
for 2023, 2023. Accessed: 2025-03-07.

[6] Palo Alto Networks. Critical Cloud Misconfigurations in
AWS, 2019. Accessed: 2025-03-07.

[7] Sam Newman. Building microservices.” O’Reilly Media,

(3]

(4]

Inc.”, 2021.
[8] Misconfiguration brings down entire .se domain
in sweden. URL http://www.circleid.com/posts/

misconfiguration_brings_down_entire_se_domain_in_
sweden, 2009. [Online; accessed 3-July-2023].

Martyn Williams and Ashlee Vance. Microsoft
takes blame for web site access failures. URL http:
/Iwww.computerworld.com/article/2590639/networking/
microsoft-takes-blame-for-web-site-access-failures.
html, 2001. [Online; accessed 3-July-2023].

Apple blames itunes outage on dns error. what does that
mean? URL https://www.csmonitor.com/Technology/
2015/0311/Apple-blames-iTunes-outage-on-DNS-error.
-What-does-that-mean, 2015. [Online; accessed
3-July-2023].

Salman Baset et al. Usable declarative configuration
specification and validation for applications, systems, and
cloud. In ACM/IFIP/USENIX Middleware Conference,
pages 29-35, 2017.

Ching-Huang et al. Lin. A study and implementation of
vulnerability assessment and misconfiguration detection.
In 2008 IEEE Asia-Pacific Services Computing Confer-
ence, pages 1252-1257. IEEE, 2008.

Zahedi Azam, Md Motaharul Islam, and Mohammad Nu-
rul Huda. Comparative analysis of intrusion detec-
tion systems and machine learning-based model analysis
through decision tree. IEEE Access, 11:80348-80391,
2023.

IS Saeh and A Khairuddin. Decision tree for static
security assessment classification. In 2009 International
Conference on Future Computer and Communication,
pages 681-684. IEEE, 2009.

Weili Wang, Lun Tang, Chenmeng Wang, and Qianbin
Chen. Real-time analysis of multiple root causes for
anomalies assisted by digital twin in nfv environment.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

11

[17]

[19]

IEEE transactions on network and service management,
19(2):905-921, 2022.

Mona Attariyan and Jason Flinn. Automating config-
uration troubleshooting with dynamic information flow
analysis. In OSDI, volume 10, pages 1-14, 2010.

Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-
Sullivan, Ramesh Govindan, Ratul Mahajan, and Todd
Millstein. A general approach to network configuration
analysis. In 12th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 15), pages
469-483, 2015.

Wanwei He, Yinpei Dai, Min Yang, Jian Sun, Fei
Huang, Luo Si, and Yongbin Li. Unified dialog model
pre-training for task-oriented dialog understanding and
generation. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 187-200, 2022.

Pengyu Zhao, Zijian Jin, and Ning Cheng. An in-
depth survey of large language model-based artificial
intelligence agents. arXiv preprint arXiv:2309.14365,
2023.

Niels LM van Adrichem, Norbert Blenn, Antonio Reyes
Lua, Xin Wang, Muhammad Wasif, Ficky Fatturrahman,
and Fernando A Kuipers. A measurement study of dnssec
misconfigurations. Security Informatics, 4:1-14, 2015.
Bibhu Dash. Zero-trust architecture (zta): Designing an
ai-powered cloud security framework for 1lms’ black box
problems. Available at SSRN 4726625, 2024.

Simone Alghisi, Massimo Rizzoli, Gabriel Roccabruna,
Seyed Mahed Mousavi, and Giuseppe Riccardi.
Should we fine-tune or rag? evaluating different
techniques to adapt llms for dialogue. arXiv preprint
arXiv:2406.06399, 2024.

Yujie Feng, Zexin Lu, Bo Liu, Liming Zhan, and Xiao-
Ming Wu. Towards llm-driven dialogue state tracking.
arXiv preprint arXiv:2310.14970, 2023.

Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe
Xu, and Ying Shen. A survey on recent advances in
Ilm-based multi-turn dialogue systems. arXiv preprint
arXiv:2402.18013, 2024.

Nguyen Van Tu, Jae-Hyoung Yoo, and James Won-Ki
Hong. Towards intent-based configuration for network
function virtualization using in-context learning in large
language models. In NOMS 2024-2024 IEEE Network
Operations and Management Symposium, pages 1-8.
IEEE, 2024.

Pradnya Kulkarni, Ameya Mahabaleshwarkar, Mrunalini
Kulkarni, Nachiket Sirsikar, and Kunal Gadgil. Conver-
sational ai: An overview of methodologies, applications
& future scope. In 2019 5th International conference
on computing, communication, control and automation
(ICCUBEA), pages 1-7. IEEE, 2019.

Shalini Chandra, Anuragini Shirish, and Shirish C Srivas-
tava. To be or not to be... human? theorizing the role
of human-like competencies in conversational artificial
intelligence agents. Journal of Management Information

Systems, 39(4):969-1005, 2022.

[28] Mei Zhang, ZT Li, Boutaib Dahhou, Michel Cabassud,

and C Volosencu. Root cause analysis of actuator fault.

In Actuators, page 131. IntechOpen, 2018.

Gustavo V Maia, Thiago M Coutinho, Eduardo B

Gongalves, Gustavo RL Silva, Eduardo MAM Mendes,

Marcelo MAM Mendes, Sandro R Caetano, Gustavo M

Mitt, and Antonio P Braga. One class density estimation

approach for fault detection and rootcause analysis in

computer networks. Journal of Network and Systems

Management, 30(4):69, 2022.

Chia-Cheng Yen, Wenting Sun, Hakimeh Purmehdi, Won

Park, Kunal Rajan Deshmukh, Nishank Thakrar, Omar

Nassef, and Adam Jacobs. Graph neural network based

root cause analysis using multivariate time-series kpis

for wireless networks. In NOMS 2022-2022 IEEE/IFIP

Network Operations and Management Symposium, pages

1-7. IEEE, 2022.

[31] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch,
et al. Mistral 7b. arXiv preprint, arXiv:2310.06825, 2023.

[32] Negar Mohammadi Koushki, Ibrahim El-Shekeil, and
Krishna Kant. Confexp: Root-cause analysis of service
misconfigurations in enterprise systems. JNSM, 33(2):1-
31, 2025.

[33] Negar Mohammadi, Sanjeev Sondur, and Krishna Kant.
Automated configuration for agile software environ-
ments. Proc. of IEEE Cloud, July 2022.

[34] Nils Reimers and Iryna Gurevych. Sentence-bert: Sen-

tence embeddings using siamese bert-networks. arXiv

preprint arXiv:1908.10084, 2019.

Chen Yin and Zixuan Zhang. A study of sentence

similarity based on the all-minilm-16-v2 model with

“same semantics, different structure” after fine tuning. In

2024 2nd International Conference on Image, Algorithms

and Artificial Intelligence (ICIAAI 2024), pages 677-684.

Atlantis Press, 2024.

Sujoy Bag, Sri Krishna Kumar, and Manoj Kumar Tiwari.

An efficient recommendation generation using relevant

jaccard similarity. Information Sciences, 483:53-64,

2019.

[37] Li Yujian and Liu Bo. A normalized levenshtein distance
metric. [EEE transactions on pattern analysis and
machine intelligence, 29(6):1091-1095, 2007.

[38] Peipei Xia, Li Zhang, and Fanzhang Li. Learning
similarity with cosine similarity ensemble. Information
sciences, 307:39-52, 2015.

[39] Jeff Case, Mark Fedor, Martin Schoffstall, and James
Davin. Simple network management protocol (SNMP).

[29]

[30]

[35]

[36]

12

IETF RFC, 1157, 1990.
[40] Rob Enns. Netconf configuration protocol. IETF RFC,
4741, 2006.
[41] Wolfgang Barth. Nagios: System and Network Monitor-
ing. No Starch Press, SF, CA, 2008.
Lang Cao. Diaggpt: An llm-based chatbot with automatic
topic management for task-oriented dialogue. arXiv

preprint arXiv:2308.08043, 2023.
Dennis Ulmer, Elman Mansimov, Kaixiang Lin, Justin

Sun, Xibin Gao, and Yi Zhang. Bootstrapping llm-based
task-oriented dialogue agents via self-talk. arXiv preprint
arXiv:2401.05033, 2024.

Engin Zeydan and Yekta Turk. Recent advances in intent-
based networking: A survey. In 2020 IEEE 91st Vehicular
Technology Conference (VIC2020-Spring), pages 1-5.
IEEE, 2020.

Nikos Leivadeas et al. A survey on intent-based net-
working. IEEE Communications Surveys & Tutorials,
24(2):1234-1256, 2022.

Matthias Falkner and John Apostolopoulos. Intent-
based networking for the enterprise: A modern network
architecture. Communications of the ACM, 65(11):70-78,
2022.

Irina Rish, Mark Brodie, Natalia Odintsova, Sheng Ma,
and Genady Grabarnik. Real-time problem determination
in distributed systems using active probing. In IEEE/IFIP
NOMS, volume 1, pages 133—-146, 2004.

Maitreya Natu and Adarshpal S Sethi. Probe sta-
tion placement for fault diagnosis. In IEEE GLOBE-
COM 2007-IEEE Global Telecommunications Confer-
ence, pages 113-117. IEEE, 2007.

Alice X Zheng and Irina Rish. Efficient test selection
in active diagnosis via entropy approximation.
preprint arXiv:1207.1418, 2012.

Deepak Jeswani et al. Adaptive monitoring: application
of probing to adapt passive monitoring. JNSM, 23:950-
9717, 2015.

Lu Lu et al. A new fault detection method for computer
networks. Reliability Engineering & System Safety,
114:45-51, 2013.

Wenliang Du and Honghao Zeng. The seed internet
emulator and its applications in cybersecurity education,
2022.

Zhan He and William Brashear. AI/ML Workflows
on ACES Accelerators. https://hprc.tamu.edu/files/
aces24/AI_ML_on_ACES_ACES_Workshop_2024.pdf,
July 2024. Presented at the ACES Workshop 2024,
Providence, RI.

[42]

[43]

[48]

arXiv

