
NeSt: A QoS Differentiating End-to-End Networked

Storage Simulator

Jit Guptaa, Sourav Dasa, Krishna Kant1a

aComputer and Information Sciences, Temple University, 1925 N 12th
St, Philadelphia, 19122, PA, USA

Abstract

The emerging high-speed storage technologies increasingly use Nonvolatile
Memory Express (NVMe) protocol to meet their high throughput and low
latency needs. In a datacenter environment, applications accessing multiple
such devices over the fabric (i.e. the network) tend to have Quality of Ser-
vice (QoS) requirements pertaining to offered throughput and experienced
latency. In this paper we describe a networked storage system simulator
called NeSt that supports end-to-end (E2E) QoS differentiation across mul-
tiple classes of service. This is done by conveying the class designation end to
end and using it to consistently but independently apply the differentiation
in each segment of the path. We demonstrate the ability of NeSt to provide
end-to-end QoS differentiation under a variety of situations. To the best of
our knowledge, NeSt is the first simulator of networked storage (consisting
of multiple NVMe SSDs) that supports E2E QoS differentiation.

Keywords: Networked Storage; End to End QoS differentiation; NVMe
Protocol; Congestion Management;

1. Introduction

Storage access is a fundamental service in data centers and is routinely
provided by specially designed storage servers that host multiple storage
devices, manage the overall storage capacity, and provide storage access to
compute servers throughout the data center. Thus the network is an integral
part of such a storage system and is easily congested by the emerging storage

1This research was supported by NSF grant CNS-2011252 and an Intel grant

Preprint submitted to Computer Networks February 5, 2024



technologies that can drive multi-gigabyte per second IO rate per storage
device. The networked storage architecture is necessitated by many factors
including the need to allocate arbitrary amounts of storage for applications
regardless of the capacities of the devices inside the storage server, and the
complex storage management that storage servers enable. A storage server
may contain storage devices of varying characteristics including the emerging
persistent memory, flash technology-based Solid State Disks (SSDs), and
traditional magnetic hard drives (HDDs). Since SSDs have largely replaced
HDDs for primary storage, we consider SSD-based storage and persistent
memory only for the networked storage simulator discussed here.

With applications becoming increasingly data-intensive [1], both storage
bandwidth and storage access latency have become key drivers of applica-
tion performance. In particular, congestion anywhere in the storage path
can adversely affect the ability of the application to read the required data
for processing or write the data that it is generating. Since different applica-
tions have varying levels of storage bandwidth needs and latency tolerance,
QoS differentiation between different classes of applications becomes essen-
tial. It is intuitively clear, and demonstrated later, that all components of
the storage path must work in unison to provide the required differentiation
among various classes of traffic, or else the results could be unpredictable.
The components of the end-to-end (E2E) path include the host storage stack,
network, storage access protocol, and the storage device itself. These compo-
nents come into play both for the request and the response. That is, the E2E
path should consider both the forward (request) and backward (response)
segments, and treat them consistently in terms of QoS. The simulator, called
NeSt (for Networked Storage) discussed here, enables such a treatment us-
ing some built-in mechanisms, which the researchers can experiment with
for different traffic mixes and relative treatment requirements. We plan to
distribute this tool with GPL license, which allows the researchers to further
enhance the implemented mechanisms or implement new ones and thereby
help create a powerful tool for the storage community.

The key contribution of this paper is to provide a comprehensive simulator
for networked storage that supports end-to-end QoS differentiation to enable
storage systems research. To the best of our knowledge, such a simulator
currently does not exist but is essential to study storage systems performance
for emerging data-intensive applications that may demand high throughput
and/or very low latency.

The rest of our paper is organized as follows - Section 2 talks about

2



the background and motivation of this work along with the limitations of
existing works. Section 3 discusses our proposed simulator - NeSt along
with its features and the implementation efforts we undertook. Section 4
compares NeSt to existing open-sourced simulation tools while Section 5
evaluates NeSt. Finally, the paper is concluded in 6.

2. Background and Related Work

2.1. Storage End QoS

Modern SSD technology has made significant strides compared to tradi-
tional magnetic disks or HDDs, excelling in both access latency and data
transfer rates. For example, even budget-friendly SSDs can now achieve im-
pressive transfer rates of 25-35 Gb/sec and maintain response times under
100 microseconds [2, 3]. Newer storage technologies, such as Intel’s Optane
and Kioxia’s XL-flash, take latency even lower, reaching around 10-20 mi-
croseconds [4]. Furthermore, both the capacities of individual devices and
the storage requirements of applications continue to go up.

These advancements have substantial implications for how we organize
and access storage devices. First, it should be possible to seamlessly allo-
cate storage to applications across one or more devices. Second, the storage
access protocols must accommodate high data transfer rates while keeping
latency minimal so that protocol delays don’t significantly impact overall
access time. Third, since a few storage devices can easily congest a 100
Gb/sec link, the network latency becomes an important component of over-
all latency, especially under congestion. This means that the differentiation
between applications based on their latency or throughput requirements be-
comes essential.

The NVMe protocol has risen as the dominant choice due to its ability
to deliver both high throughput and low latency [5]. It achieves this through
enhancements in the queuing process atop the PCIe interface, enabling de-
vices to interact directly with the CPU, in contrast to older protocols like
SATA and SAS that use indirect DMA interfaces. NVMe supports multi-
ple ”queue pairs” with varying priorities, allowing for a flexible approach to
handling storage access. Extending storage access over a network necessi-
tates the local access protocol, such as NVMe, to be transported from the
host to the target without altering the fundamental access principles. NVMe
over Fabric (NVMe-oF) [6] achieves this by encapsulating submission and
completion queue entries into transport-independent ”capsules” for transfer

3



between the host and the target. This transport approach also stores the
command queue in the device controller’s memory, known as the Controller
Memory Buffer (CMB), rather than in the host’s memory, further reducing
latency. The completion queue remains with the host [7].

NVMe-oF is designed to run over a reliable transport, and suitable options
for data center environments include DCTCP (based on TCP) and DCQCN
(based on RDMA). These transport protocols aim to eliminate packet losses
and minimize latency, with DCQCN potentially offering lower latency. How-
ever, neither of them provides differentiation in quality of service (QoS) [8].

2.2. Storage vs. Persistent Memory

The emerging Persistent Memory (PM) technology offers low-latency,
high-throughput, overwrite capability (unlike regular NAND flash), and very
high endurance. These attributes makes it a viable option for direct DRAM-
like access while providing data persistence. However, to take advantage of
the persistence, it is necessary to deploy mechanisms such as transactional
memory to ensure that the data consistency can be preserved following a
crash or power failure.

While PM technologies, such as Intel Optane are currently significantly
slower than the venerable Dynamic Random-Access Memory (DRAM), they
are cheaper than DRAM and thus can be used to extend DRAM [9]. Leading
tech giants like Amazon and Oracle have recognized the potential of PM and
incorporated it into their offerings. For instance, Amazon ElastiCache2 and
Oracle’s Persistent Memory Database leverage Persistent Memory (pmem)
technology for data storage and database solutions.3 PM devices can serve
dual purposes, operating with either storage or memory semantics. Under
storage semantics, access sizes are typically larger (e.g., 4KB), and threads
requesting device access may be temporarily switched out until the desired
data is received. Conversely, in the memory model, access sizes typically
involve fetching a few cache lines, causing the CPU to stall until the data
arrives. In this work, we consider the storage model pertaining to PM devices.
Our previous work [10] has explored the use of such memory model.

2https://aws.amazon.com/elasticache/
3Intel has recently discontinued development of Optane due to

business reasons, but current products remain available. See
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-
memory/optane-dc-persistent-memory.html.

4



While locally installed PM often benefits from a DRAM-like interface
(e.g., DDR) to provide low latency, the scenario changes when accessing it
over a network. In either case (whether being accessed as a storage device or a
memory device), the additional network latency can be excessive, particularly
when this traffic competes with other classes of traffic in the network. It is
thus important to provide the highest priority to PM transfers so that the
PM traffic is not throttled even using congestion episodes (assuming that it
is relatively small as compared to the other non-PM traffic). Furthermore,
the network switches should also be equipped to provide preference to this
traffic, ensuring that it receives the highest priority end to end. It is thus
possible to reduce remote PM access latency substantially.

2.3. QoS Limitations in Current Data Center Networks

Current data center networks struggle to deliver consistent Quality of
Service (QoS) for diverse traffic types, particularly those with strict latency
requirements. This challenge stems from several factors, including: the dom-
inance of kernel-based network stacks, which can introduce bottlenecks and
limit responsiveness; the lack of flexibility in handling different traffic classes
with varying bandwidth and latency needs; and the difficulty in ensuring
predictable performance across a complex network infrastructure [11]. As a
result, applications with stringent QoS requirements, such as real-time ana-
lytics and high-frequency trading, often suffer from unpredictable delays and
performance fluctuations. In order to mitigate latency issues and designate
traffic based on different classes within the network, two types of scheduling
mechanisms can be utilized: Relative Priority and Strict Priority.

Relative Priority: For flows where absolute timing isn’t very important,
relative priority shines. This allows fine-grained QoS differentiation based
on bandwidth and latency needs without completely starving lower-priority
flows. This aspect involves reducing the latency for traffic belonging to a
high-priority QoS class compared to other classes during standard traffic
conditions. NeSt supports various mechanisms for relative prioritization,
including Weighted Round Robin (WRR). With WRR, each flow receives
service in proportion to its assigned weight, ensuring fair and predictable
resource allocation within the designated class. Other mechanisms, like QoS-
aware versions of TCP and RDMA (QTCP and QRDMA), further refine
prioritization based on network conditions and application requirements. We
delve deeper into these advanced mechanisms in Section 2.4, exploring their
nuanced control over QoS.

5



Strict Priority: For applications demanding guaranteed low latency, strict
priority makes more sense. This is particularly relevant for workloads access-
ing the Persistent Memory Region (PMR) introduced by the NVMe specifi-
cation [12]. PMR offers memory-level data access speeds, crucial for latency-
sensitive applications. However, strict priority is not without its drawbacks.
Throttling other flows during congestion can be undesirable, potentially lead-
ing to starvation for lower-priority traffic. This highlights the need for a more
flexible approach for non-latency-critical workloads.

In the context of Ethernet and IP-based networks, Quality of Service
(QoS) has been a subject of extensive study. Standardized mechanisms like
Differentiated Services Code Point (DSCP) have been widely adopted, par-
ticularly at the IP layer [13]. However, DSCP was primarily designed for
wide area networks, where transport protocols, such as conventional TCP,
are sensitive to packet losses, making a packet loss-centric QoS treatment
reasonable. In contrast, high-speed data center networks try to avoid packet
losses entirely because of their very detrimental impact. This renders DSCP
less suitable. Moreover, DSCP operates on a ”hop-by-hop” basis within
each router, rather than providing uniform end-to-end treatment in layer-
2 switch-centric networks in data centers. Several lossless transports have
been proposed in the literature for data centers, including Data Center TCP
(DCTCP) on the TCP side and Data Center Quality of Service Conges-
tion Notification (DCQCN) on the RDMA side. These technologies embrace
proactive congestion control mechanisms, where senders monitor congestion
through feedback mechanisms like Explicit Congestion Notification (ECN)
which employs two bits in packet headers. One bit conveys the congestion
anywhere in the forward path to the receiver. The receiver then sets the
other bit in packets traveling back to the sender to inform it of the conges-
tion. ECN is a standard mechanism and is often supported or emulated in
higher end data center switches.

DCTCP uses ECN to detect queue buildup in switch buffers (as opposed
to actual packet drops) and modulates flow rates accordingly. Similarly, Re-
mote Direct Memory Access over Converged Ethernet Version 2 (ROCEv2)
[14] implements the RDMA protocol atop the IP layer and employs a related
mechanism known as DCQCN for proactive congestion control. However, nei-
ther of them supports any QoS differentiation, an issue that we have explored
extensively in [10]. This paper shows how we incorporate these capabilities
in a tool supporting networked storage accesses.

6



2.4. Overview of DCTCP and DCQCN

In this section we provide a brief overview of DCTCP and DCQCN; a
more detailed treatment is contained in our related paper [10]. Both use the
notion of congestion window (CWND) which is the number of transmissions
within a round-trip time (RTT). DCTCP uses the ECE bit to mark the
TCP packet acknowledgments thereby indicating which packets (going in the
forward direction) encountered congestion. Thus the fraction of such marked
acknowledgments indicates the severity of congestion. Suppose that we have
I competing TCP connections (or flows). Let fi(n) denote the fraction of
marked acknowledgments for the i-th flow within its n-th window.

Since fi(n) is likely to be highly variable, it is smoothed exponentially
over succeeding windows to obtain the smoothed estimate denoted as αi(n).

αi(n) = (1− g)αi(n− 1) + gfi(n− 1) (1)

where 0 < g < 1 is the smoothing constant with a default value of 0.5 that
we determined as reasonable in most cases.

DCTCP algorithm: DCTCP reduces the window per RTT in propor-
tion to the latest estimate of αi such that in the limiting case of αi = 1, the
window is halved. Let Wi(n) denote the size of the nth window of flow i (i.e.,
the number of transmissions in this window). Then the window controlling
mechanism is formulated as follows:

Wi(n) = Wi(n− 1)
(
1− αi

2

)
(2)

DCQCN algorithm: Data Center Quantized Congestion Notification
(DCQCN) is a DCTCP-like mechanism that works with the RDMA protocol
(rather than TCP). It uses the PFC (priority flow control) and ETS (en-
hanced transmission service) features in the data center Ethernet and thus is
an L2 QoS capability. PFC is limited to doing an independent flow control for
each of the 8 priority classes defined by the 3 CoS (Class of Service) bits in an
Ethernet frame. ETS allows for a more granular BW control across classes
using a WRR (weighted round-robin) mechanism. Nevertheless, the com-
bined PFC/ETS cannot distinguish between different destinations of flows
and generates a PAUSE frame as a response to congestion for all flows in a
CoS class. DCQCN uses these mechanisms with an emulated ECN to circum-
vent this issue. Since ROCEv2 utilizes a connectionless protocol i.e. UDP,
it cannot leverage the ACK packets like in DCTCP. Hence the congestion

7



feedback mechanism needs to be request-agnostic. The switches mark the
ECN bits once congestion is detected, which the receiver NIC detects. The
receiver then sends back a ROCEv2 standardized Congestion Notification
Packet (CNP) to the sender NIC for every N microsecond interval. This
goes on for every interval until it stops receiving ECN-marked packets. As
the maximum number of CNPs received during each interval is 1, Eq.1 for
DCQCN during congestion is updated as follows,

αi(n) = (1− g)αi(n− 1) + g (3)

The sender modifies the rate reduction factor according to Eq.3 and also
stores the current rate so as to utilize it later on for flow rate recovery. It is
formulated as follows,

RTi(n) = RCi(n− 1) (4)

RTi(n) = RCi(n− 1)
(
1− αi

/
2
)

(5)

The stored rate value of RTi(n) is used to increase the flow rate once the
congestion episode passes. There are two phases for increasing flow rate -
fast recovery and additive increase. During fast recovery, the flow rate RCi

is rapidly increased so as to reach the target value of RTi(n) in successive
iterations, i.e. :

RCi(n) =
{
RTi(n− 1) +RCi(n− 1)

}/
2 (6)

This fast recovery phase is followed by additive increase when the flow rate
is slowly increased by an additive constant RAI so as to reach the target rate
as follows:

RTi(n) = RTi(n− 1) +RAI (7)

RCi(n) =
{
RTi(n− 1) +RCi(n− 1)

}/
2 (8)

QTCP and QRDMA: In our previous works[15, 10], we tackled QoS
differentiation in the network by proposing QoS-aware versions of DCTCP
and DCQCN, i.e. QTCP and QRDMA respectively. We introduced a class-
specific quality factor metric, Q, to control the flow rate during congestion.
Each QoS class has a specified relative throughput or latency factor, which
allows us to determine Q as a ratio of actual vs. target value. Flows with

8



Q > 1 are squeezed whereas those with Q < 1 are allowed to expand, thereby
moving all classes towards the desired allocation according to their QoS re-
quirements. All other window modulation equations are kept the same as
DCTCP (or DCQCN in the case of QRDMA) and in fact, in the absence
of congestion, QTCP behaves exactly as DCTCP. The modified equations
pertaining to QTCP are as follows:

Wi(n) =


Wi(n− 1) + 1, No ECN

Wi(n− 1)(1− αi

2
), αi ≥ 0 and Qi ≥ 1

Wi(n− 1)(1− αi

2
)Qi, αi ≥ 0 and Qi < 1

(9)

where Wi is the window size for a flow i. Similar to DCTCP, we use the
value of αi i.e., the fraction of packets that are ECN marked) along with our
new metric Qi to modulate the flow rate.

We utilize this modified version of DCTCP (i.e. QTCP) in our E2E QoS
differentiation as the transport protocol. However, DCTCP can also be used
if the application does not require QoS differentiation. Additionally, some
applications require strict priority as mentioned in 2.3. NVMe supports strict
priority as well, using a class called “Urgent”, which gets nonpremptive pri-
ority over others. This is in contrast to other classes whose priority is defined
through a weighted round robin (WRR) mechanism. For these applications,
we provide in-network priority by reserving buffer space in the switches so
as to not throttle the strict priority traffic up to a certain threshold. We
henceforth include the notion of in-network priority treatment as a part of
“urgent” class. In our previous work[10] we discuss this in detail and and
show that this reservation is not fatal for other applications due to the Urgent
application’s small request sizes.

2.5. Drawbacks of contemporary simulators

In the domain of simulators, there are various tools dedicated to differ-
ent aspects such as end-to-end (E2E) simulations, network simulations, and
storage device simulations. On the network side, although several prominent
simulators are in use such as Omnet++ [16], OPNET [17], NS3 [18], Mininet
[19], etc., the most widely used and cited open-source simulator is NS3. NS3
[18] has largely been developed extensively in the networking community and
emphasizes a range of networking protocols, including both wired and wire-
less protocols. Unfortunately, all these simulators still lack the simulation
of networked storage systems and end-to-end QoS differentiation. We have

9



made use of NS3 in creating NeSt’s network stack, but have implemented ad-
ditional capabilities, which in turn required a tremendous amount of effort,
not to mention several bugs that needed to be tracked down and fixed.

There are several simulators in the area of storage systems, but they fo-
cus on different aspects. Some of the best known ones are simply file-system
benchmarks (e.g., FIO, IOZONE, Filebench [20, 21, 22]) that create a bunch
of files with some given size distribution and access them in specified ways
(sequential, random, or a combination), and thus do not have much to do
with underlying storage systems [23]. The same goes for the more detailed
file system simulators such as Zion [24] or SimFS [25]. Others are designed for
specific purposes; for example, SimSANs and SANgo concern Storage Area
Networks (SANs). SimSANS is specifically intended to address the moving
of legacy Fiber channel SAN to the converged Ethernet domain. Numer-
ous storage device simulators exist, such as MQSim, StorageSim, DiskSim,
VSSim, FlashSim, SimpleSSD, and some (e.g., StorageSim) can also simu-
late the storage hierarchy [26, 27, 28, 29, 30]. However, designing simulators
to handle the entire data center storage system is a difficult task. For ex-
ample, such a simulator would need to handle logical volume management
(LVM) across multiple devices, data placement, storage virtualization, tier-
ing, caching, erasure coding/replication, deduplication, encryption, power
failure consistency, IO failure handling, etc. Thus, our goal is merely to de-
sign a simulator that accurately represents networked access to one or more
storage devices. Other capabilities can be developed by the community on
top of NeSt.

End-to-end (E2E) evaluation of datacenter applications requires a simu-
lator that combines all the necessary components. E2E cloud simulator tools
are designed to simulate the entire cloud computing environment to test ap-
plications or services. One such example is CloudSim [31]. However, a key
limitation of CloudSim lies in its coarse resource modeling [32] along with its
lack of a comprehensive storage endpoint. Advanced networking intricacies,
such as detailed protocols, QoS (Quality of Service), and network topolo-
gies, also cannot be explicitly modeled in the standard CloudSim framework.
CloudAnalyst, which is a similar tool built as an extension to CloudSim, as-
sumes static configurations [33] but does not address the mentioned deficien-
cies. Hence, it does not accurately represent the E2E environment required
to simulate networked storage systems.

This brings us to NeSt, which we built by taking advantage of two existing
simulators, namely, NS3 for the network end and MQSim for the storage

10



end. NeSt supports QoS differentiation at the network level, storage access
protocol level, and inside the storage device itself. Additionally, it addresses
the limitations of the aforementioned simulators as well. We’ll delve into its
unique capabilities in detail later in Section 3.

It is worth noting that in addition to simulators, there are also several
emulators in existence. The key distinction is that an emulator allows un-
modified code of the relevant service to be run directly within a container or
a lightweight VM. Several emulators exist for the networking infrastructure
such as Mininet, CORE, and SEED, and can run unmodified open-source
code for various protocols and services [34, 35, 36]. However, they are not
useful for networked storage applications since the code for SSD internals
(e.g. FTL) is proprietary. Even for the networking part, running protocols
would require executing the entire OS in the container.

3. Proposed Simulator

An E2E storage access scenario (right from the host to the storage device
and back to the host) follows the steps given in Fig.1. There are 3 major
components in NeSt’s E2E path:

• Network Module: This consists of the host end and the network com-
bined into a single module. It simulates both the sender and receive
side network path with a detailed implementation of the network stack,
including L2/L3 switches.

• Storage Module: This simulates SSDs along with the storage access
protocol and is discussed in detail in 3.2. Additionally, it also supports
the simulation of PM accesses, which is discussed in 3.3.

• Interfacing Module: This module acts as the connector between the
network module and the storage module and is explained in detail in
3.5

Our proposed simulator, NeSt, utilizes the concept of nodes to simulate
endpoints such as hosts and storage servers. Each host has the functionality
to house different types of applications. The links connecting nodes are
bidirectional and the transport protocol used can be configured. Supported
transport options are datacenter versions of TCP, RDMA, and QoS-aware
versions of TCP and RDMA (i.e., QTCP and QRDMA). Other protocols

11



Figure 1: E2E Flowchart for NeSt

built into NS3 should also be usable but have not been included in our
evaluation in 5.

As shown in Fig.1, the host first generates the request and the request is
broken into equal sized packets in case of a write (i.e. the write data) or a
single packet is sent in case of a read (i.e. the read request). The Interfacing
Module assembles write data packets and submits the write data (or the
read request) to the Storage Module, which in turn generates and sends back
the responses to the Interfacing Module. This, in turn, breaks the responses
into equal sized packets in case of a read while it sends a write completion
acknowledgment back to the host. The host processes all response packets
to mark request completion.

3.1. Architecture of MQSim

NeSt’s storage module architecture is based on the previously mentioned
popular SSD simulator, MQSim. As shown in Figure 2, it comprises the Host
Interface which fetches requests from the interfacing protocol (i.e. NVMe)
and translates them to device commands (using the Request Fetch Unit and
the Input Stream manager respectively). It then checks if the data is present
in the DRAM cache present in the SSD using the Data Cache Manager. The
Flash Translation Layer (FTL) then manages the mapping between logical
addresses used by the host and physical flash memory locations using its
Address Mapping Unit. The Background Operations Unit manages activities
such as garbage collection and wear leveling by communicating with the FTL
and the SSD backend. Finally, the Transaction Scheduling Unit fetches and

12



Figure 2: Architecture of MQSim

serves requests from the FTL by accessing the SSD backend using the NVM
channel.

Additionally, MQSim’s evaluation has revealed that it closely approxi-
mates the performance of actual SSDs, with response time errors averaging
between 11% and 18% [37]. It allows for the evaluation and assessment of
different types of SSD performance by simulating various configurations that
can be managed by user-settable parameters. However, it is crucial to ac-
knowledge the limitations inherent to MQSim, including incomplete support
for NVMe’s Weighted Round Robin queue arbitration mechanism, its inabil-
ity to simulate multiple devices, and the absence of support for behavioral
simulation of Persistent Memory technologies and remote device access.

3.2. Multiple Devices with Multiple Configurations

Our storage end simulation of SSDs is based off of the widely used SSD
simulator - MQSim. Since MQSim only supports a single SSD, we extended
it by vectorizing all data structures, objects, and function calls while making
changes wherever necessary to accommodate object-oriented programming
concepts. Furthermore, we also added a new feature that ensures each de-
vice in the array of devices can support different device configurations. For
example, we can simulate a SLC SSD, MLC SSD, and a TLC SSD at the
same time, with each of them having differing characteristics. NeSt also
provides the additional functionality of reading multiple configuration files
during runtime. Further, the number of devices is a settable parameter. We

13



Figure 3: High Level Architecture of NeSt

have evaluated NeSt with a maximum of 30 devices (shown later in 5.4.4),
however, the number of devices can be increased depending on the specifica-
tions of the system on which NeSt is run.

3.3. Simulation of Persistent Memory Accesses

As mentioned before, PM devices are at least 3-5 times faster than tra-
ditional NVMe SSDs and may have a very different internal architecture
depending on the technology [38]. In particular, Intel Optane has a DRAM-
like structure involving multiple ranks and banks. We provide a behavioral
simulation of PM accesses by switching off access to the SSD backend and
extending the DRAM buffer module present inside our storage module (i.e.
the buffer used inside an SSD to cache frequently accessed data). We do not
simulate the internal architecture of the PM device and do not believe that
is necessary in NeST. Additionally, we have preserved the DRAM caching
capabilities of an SSD device simulation by introducing a flag that helps in de-
termining if this DRAM module is being used as an SSD cache or to simulate
PM accesses. A request that is tagged as Urgent is directed towards our PM
module. The request (whether it be a read request or write data) is resolved
in our modified DRAM buffer cache and the response (i.e. read data or write
acknowledgment) is sent out, thus resulting in an access performance that is
faster than SSDs and comparable to PM devices. Our simulation of the PM
accesses allows it to serve both storage requests (i.e. in request sizes ranging
from 512 bytes to 4KB blocks) and memory requests (i.e. in request sizes
ranging from 2-4 cacheline/64-128 bytes). Remote applications pertaining to
the former mode of access are either throughput or latency sensitive while the
latter mode applies to ultra-low latency-sensitive applications specifically. In
our evaluation of this feature, we consider large transfer requests from both

14



throughput and latency-sensitive applications. The overall end-to-end archi-
tecture of NeSt (with NVMe devices at the target end) is shown in Fig.3
where we have host nodes (housing the applications) accessing target servers
via network switches. These target servers contain our simulation of the PM
accesses and the simulation of the SSD device, connected by the NVMe stor-
age access protocol. Since the NeSt model currently has no representation of
CPU, the only real distinction between storage and memory accesses is their
performance, depending on the transfer sizes and the latency parameters. As
we have already explored small transfer memory accesses previously[10], in
this work we evaluate the performance of large transfer storage accesses from
PM applications.

3.4. QoS Differentiation in the Storage Module

QoS differentiation in the NVMe level uses Weighted Round Robin (WRR)
queue arbitration on the submission queues (i.e. the interfacing queues).
Even though existing simulators claim to support this feature, their imple-
mentations are traditionally a naive workaround of the actual mechanism.
We made the necessary changes to accommodate this queue arbitration fea-
ture. We also extended the WRR implementation to the in-device queues to
ensure that there is QoS differentiation inside the device as well, thus making
sure that the QoS differentiation is truly end-to-end, except that it does not
deal with managing the background activities inside the SSD. Our previous
work[39, 40] has looked into tackling these background latencies and could
be incorporated in NeSt but is not done currently.

3.5. Interfacing between Network and Storage

To simulate the datacenter environment, we need to interface the host
requests arriving via the network, with the storage end. We introduced
a separate Interfacing Module which lies between the Network and Storage
Modules. This module contains a pair of queues, i.e. the request and response
queues. The former carries the write data and read requests towards the
storage device while the latter carries the write acknowledgments and the
read data back to the hosts. The batch size for servicing the request and
response queues is kept as 1 to ensure that there are no queuing delays
caused by the Interfacing Module. This is because this module is a simulator
component and not an actual E2E path component. Hence it is desired that
its effect on the E2E performance of a request be minimal if any.

15



3.6. Trace Replay Module

A limitation present in network simulators (ex. NS3) is the absence of
replaying storage block traces. This is because network simulators aim to
simulate and capture packet traces. Due to the absence of a target device
endpoint, these simulators are not concerned with block requests. NeSt ad-
dresses this by introducing a sub-module in the network module that reads
storage trace files and breaks individual requests into packets. It reads a
request and inserts its corresponding information into the event tree at the
specified timestamp (which is read from the trace file too). The request is
triggered at the given timestamp by the event tree and the next request
information is again inserted into the event tree. This continues until the
entire trace file has been read. Additionally, this module also contains the
capability to scale entire simulations. For example, a one hour long trace can
be decreased to a 6 minute long trace or increased to a ten hour long trace.
This scaling factor can be modified according to the user requirements. This
feature helps in introducing complex congestion scenarios in realistic data-
center environments or to reduce the length of long running simulations. We
have utilized this feature in our evaluations later on.

3.7. Time Synchronization between Network and Storage

Event-driven simulations require all events to be properly ordered in sim-
ulation time, else the interactions between the events could lead to unpre-
dictable results. This is not a problem with a single simulator designed from
scratch; however, it can become a problem when integrating two distinct
simulators. NeSt attempts to integrate the simulation engines of NS3 and
MQSim and thus time synchronization between the two becomes important.

We solved this synchronization issue by using a single clock and event tree,
i.e. the network end tree and clock. We leveraged the network end event tree
and clock by making modifications in the storage simulation module. These
changes ensured that the storage module followed the network module’s event
clock and all its events were inserted in the single event tree, thus preserving
the relationship between dependant events.

However, this is not enough for the seamless handling of requests between
both the network and storage end. We also introduced a new host module
on the storage end. This module remains dormant unless triggered by the
interfacing module. The triggering event occurs whenever the network end
finishes processing a request, i.e. when the request reaches the endpoint node
via the switches and pushes the processed request into the interfacing request

16



queue. The newly introduced host module then generates this request from
the interface queue by converting it into the format recognized by the device,
following which it pushes it into the submission queue of the NVMe device.

4. Comparison with existing simulators

Figure 4: Comparison of Different Open Source Simulators

As mentioned in 2.5, open-source simulators are widely utilized by the
research community to capture components crucial to a datacenter environ-
ment. These simulators can be broadly classified into three different types
- network simulators (ex. NS3 [18], Omnet++ [16]), storage simulators (ex.
MQSim [26], SimpleSSD [30]), and E2E simulators (ex. Cloudsim [31]). In
Fig.4 we compare the features required for an end-to-end QoS differentiating
datacenter storage simulator with the existing simulators that fall under the
mentioned types of simulators. The network simulators such as NS3 and Om-
net++ can simulate the network but not the target device endpoint. Some
of the storage related limitations of network simulators are addressed in stor-
age simulators such as MQSim and SimpleSSD, which are SSD simulators.

17



However, storage simulators do not consider accesses in a datacenter con-
text and also do not support the simulation of multiple devices with varying
configurations. Additionally, they do not consider the PM accesses. Some
E2E simulators such as CloudSim have been enhanced by research teams
to support SSD accesses and thus in a way simulate end-to-end access of
the target device. However, it does not simulate the storage access protocol
(i.e., NVMe) while QoS differentiation is also absent. NeSt addresses all these
limitations of the aforementioned simulators by supporting all the mentioned
necessary features as shown in Fig.4.

5. Evaluation

5.1. Comparison with Real Systems

Figure 5: Comparison between simulation and real environment

The first step in evaluating a simulator is to compare its performance
with a real environment. In this section, we compare the latency observed in
the following four scenarios with respect to SSD storage access:

• Local access to an NVMe SSD using a mixed read-write workload gen-
erated using iperf

• Remote access to the same SSD (with NVMe-oF) using the same work-
load with TCP being used as the transport protocol protocol

• Simulated access to an SSD using MQSim

• E2E simulated access using NeSt

18



The SSD used for the real experiments is a Samsung 970 EVO Plus while
the SSD used for the simulation experiments mirrors the same parameters
exhibited with the Samsung SSD. MQSim provides a comprehensive settable
parameter list pertaining to the SSD being simulated. We utilize this feature
to simulate the same SSD as the real experiments with increasing queue
depth. In the real experiments, SPDK [41] was used for both local and E2E
access to the device. For the remote access, we connected two Dell Precision
Tower workstations using a switch, with the host workstation requesting data
present in the SSD on the target workstation using SPDK. All links are using
100Gbps.

We first compare the local access to the SSD using MQSim. We notice
that both local and MQSim performance are nearly identical for all the queue
depths considered, with the latency observed ranging from 40-90µs. This is
due to MQSim’s accurate and comprehensive replication of the SSD frontend
and backend, which includes details of the NAND architecture present in an
SSD along with queuing at different levels. This further makes it an ideal
candidate for use in NeSt as the simulated target device. We now compare
NeSt’s performance with real E2E storage access. In this case, NeSt’s archi-
tecture resembles a host application requesting data from a storage server
with a single SSD (with the same parameters) via an intermediate switch.
All links are 100Gbps and the transport protocol used for NVMe-oF is also
TCP. We notice that NeSt’s performance is also similar to the behavior ex-
hibited by the real experiment with the latency ranging from 120-190µs. The
slight difference in latency is due to the lack of kernel involvement, thus this
latency is not modeled by the NeSt. Thus we can say that NeSt accurately
models a real end-to-end scenario. However, since these scenarios are without
congestion, the carried throughput is not interesting. We discuss throughput
evaluations for congested scenarios in subsequent sections.

5.2. E2E Throughput Evaluation

In this section, we look into NeSt’s capability in guaranteeing E2E through-
put differentiation. We consider network throughput and storage end (i.e.
NVMe + device end) throughput as two separate components and show
how both of them provide throughput differentiation in order to guarantee
E2E requirements. The three workloads (for High, Medium, and Low QoS
classes) have been generated using NeSt’s built-in traffic generator. We eval-
uated a read-only workload, a write-only workload, and a read and write

19



Figure 6: Evaluation of a throughput sensitive read only workload

Figure 7: Evaluation of a throughput sensitive write only workload

mixed workload. The workloads follow an exponential request interarrival
time distribution and the endpoint consists of ten different storage servers.

For the read-only workload in Fig.6, the bottleneck is on the backward
receive link due to the read data being transferred from the storage end ex-
ceeding the bottleneck link capacity of 100Gbps. The High, Medium, and
Low QoS classes read data at a rate of 90Gbps, 60Gbps, and 30Gbps respec-
tively. This causes congestion and QTCP is triggered, which we observe at
the response end in Fig.6. The storage end also provides QoS differentiation
due to the NVMe WRR protocol coupled with the proposed modification in
3.4. The three classes receive throughput differentiation in the ratio of 3:2:1.
This shows that the E2E throughput differentiation is provided according
to the application’s QoS class. For the write-only workload (in Fig.8) the
bottleneck is on the sender side due to the applications’ write data congest-
ing the sender bottleneck link of 100Gbps. In this case too we notice that
the QoS requirements are respected similar to the read-only workload. The

20



Figure 8: Evaluation of a throughput sensitive read write workload

storage end provides the differentiation too.
In the case of the read write workload, we utilized the combination of

the workloads used in Fig.6 and Fig.8. This creates a pathological scenario
with both sender-side and response-side links congested. However, as seen
in Fig.8, NeSt shows E2E throughput differentiation even in this case. With
all 3 components guaranteeing throughput requirements, i.e. request path,
storage end, and response path. The throughput is once again divided in the
ratio of 3:2:1. This shows that NeSt’s throughput differentiation capabilities
(i.e. QTCP in the network end, NVMe WRR, and SSD Device-level Differ-
entiation) adequately provide E2E throughput differentiation irrespective of
the workload type. We evaluate applications with PM access in subsequent
sections.

5.3. E2E Latency Evaluation

(a) PM Access Latency (b) E2E Latency w DCTCP (c) E2E Latency w QTCP

Figure 9: Tail Latency Comparison

We now look at E2E latency evaluation for NeSt. First, we test NeSt’s
simulation of PM accesses. Fig.9a shows the PM access latencies exhibited

21



by urgent class requests. We chose the arrival process of the requests to PM
as 4KB in size because small sizes would be infeasible due to large network la-
tency. We observe that the latency ranges from 35-40µs which is surprisingly
low considering that this is the E2E latency of a storage request. However,
our in-network prioritization using reserved buffer space in the switches helps
in achieving ”Urgent” class status for these applications.

We now consider a mixed traffic scenario comprising PM applications and
other storage applications under congestion. Clearly, it is not possible to meet
the latency bounds for both types of traffic since the latency will continue
to go up under congestion. Hence we consider a transient congestion episode
that lasts for 2 seconds in Fig.9b and Fig.9c. The former uses DCTCP as
the transport protocol while the latter uses QTCP. The workloads for the
High, Med, and Low classes follow an exponential request interarrival time
distribution with High pushing 90Gbps, Medium 60Gbps, and Low 30Gbps
worth of traffic.

We observe in Fig.9b that DCTCP fails to provide correct QoS differen-
tiation during the transient congestion episode, with the Medium QoS class
performing far worse than the Low QoS class. However, this is remedied
by using QTCP in Fig.9c with all four QoS classes receiving relative QoS
differentiation. It is interesting to note the exact ratios of latency are not
maintained as it is difficult to control background latencies in the SSD de-
vice (caused due to the SSD’s internal architecture as mentioned in 3.1) along
with queuing in the network. However, we can still provide relative differ-
entiation as we have shown in Fig.9c. Finally, we can also see that both
Urgent and High classes get their differentiation in both cases. This is due to
the fact that both these classes have fewer number of requests with smaller
request sizes. Our evaluation in this section also shows NeSt’s capability in
evaluating remote applications running on different transport protocols, ex.
DCTCP.

5.4. Evaluating Realistic Scenarios

In this section, we utilize NeSt’s trace replay module(explained in 3.6)
to evaluate other offered features. Before we dive into the results of our
evaluation, we first discuss the workloads we have used.

5.4.1. Workload Characteristics

For testing the storage trace replaying functionality of NeSt, we utilized
the traces published by Tencent at ATC, 2020[42]. These traces are a col-

22



(a) (b)

Figure 10: Workload (a) read and (b) write distribution

Figure 11: Throughput differentiation of a real workload

lection of six day long I/O traces from a production cloud block storage
system. The cloud block storage system contains tens of thousands of cloud
disks. These traces push total traffic worth 3-4Gbps and hence we utilized
the scaling feature present in the trace replay module to address the slow
interarrival time of the traces. This helps in creating congestion scenarios in
10Gbps links.

We selected traces for four different servers depending on their read and
write distribution as shown in Fig.10a and Fig.10b respectively. The Urgent
class workload has the lowest read and write size counts and, thus the lowest
storage and network load. This is characteristic of applications that require
the highest priority treatment[43]. We also chose workloads depending on
their read and write mix, for example, the medium class workload is write
intensive while high and low class contain a good mix of both read and write
requests.

5.4.2. PM Access Evaluation

We test how NeSt’s PM module performs when used as a storage device,
i.e. when accessed by throughput-sensitive applications. We utilize the work-

23



Figure 12: Fat Tree Topology

loads discussed in 5.4.1 and preserve the same experimental setup used in
5.2. The bottleneck link is changed to 10Gbps to cause a congestion episode.
We observe in Fig.11 that the Urgent traffic (i.e. the application accessing
the PM module) receives its desired throughput. We utilize the buffer reser-
vation for PM traffic as explained in 2.4 to give it the highest priority in the
network. Similarly, the storage device itself also treats it as Urgent priority.
We notice that slight peaks in traffic for the Urgent traffic result in traffic
pertaining to other QoS classes making way for it. This reactive behavior to
traffic changes is maintained even when a certain QoS class exits the sim-
ulation and re-enters at a later time. For example, in Fig.11 we see that
the Medium class traffic (which is a write heavy workload) stops performing
writes at around the 1250ms mark and restarts at around the 1500ms mark.
As soon as it exits the simulation, both the High and Low classes grab onto
the available bandwidth according to their respective QoS classes. Again,
we see that the Low class also exits at around the 1300ms mark and hence
the High class traffic grabs onto the available bandwidth again. As soon as
both the Medium and Low classes re-enter the datacenter, the High class
traffic is squeezed while also respecting its QoS class. On the storage end,
the throughput differentiation is not as clear due to no bottleneck present in
the storage end, thus all classes receive their required throughput. On the
response end, only three classes vie for the available bandwidth due to the
Medium class being write heavy.

5.4.3. Fat Tree Evaluation

We now look at how NeSt performs in a real datacenter topology. We use
the fat tree topology as it is still widely used in datacenters. Our fat tree(as

24



Figure 13: Throughput differentiation in a fat tree topology

shown in Fig.12) has 2 pods with Pod 1 being connected to the four host
systems. The host systems request data from the storage servers R1, R2, R3,
and R4 in Pod 2. The core level links are 100Gbps while the aggregation and
edge level links are 10Gbps. We use the same workloads as in Fig.11. In this
case, we observe that the behavior is nearly identical to Fig.11. Both Fig.13
and Fig.11 show very similar behavior and thus the QoS abiding techniques
used by NeSt achieve the required differentiation for realistic data center
network topologies as well.

5.4.4. Multi Device Simulation

(a) No. of SSDs = 3 (b) No. of SSDs = 10 (c) No. of SSDs = 20

Figure 14: Storage Bottleneck Comparison

We now look into NeSt’s feature of simulating multiple NVMe SSD de-
vices. A bottleneck in the storage server is generally much less likely than
the network. Thus the storage end will usually respect the throughput pro-
vided by the network. In the case when the network is QoS agnostic, the
storage device also turns QoS agnostic. However, SSD bandwidth could be-
come a bottleneck if only a few large-capacity devices are used to support

25



many applications. We evaluate three different scenarios in Fig.14 with dif-
ferent number of SSDs at the storage end and utilize the workload used in
Fig.7 to create a bottlenecked forward link scenario. The network is QoS
agnostic in this experiment, hence the incoming traffic does not respect the
QoS classes and it is up to the storage to provide QoS differentiation. In
Fig.14a, the number of devices is 3 and we can see that the storage through-
put differentiation (as mentioned in 3.4) gradually kicks in as the bottleneck
scenario arises. On increasing the number of devices to 10 and 20 in Fig.14b
and Fig.14c respectively, the bottleneck disappears. In both these cases,
the storage end still tries to provide differentiation by squeezing the Low
class traffic, however, it fails to provide differentiation between the High and
Medium classes.

6. Conclusions and Future Work

In this paper, we presented the design and evaluation of a simulator
for networked storage systems in enterprise systems. The simulator, named
NeSt, is specifically designed to simulate remote access to a group of flash-
based storage devices (i.e., SSDs) accessed via the increasingly dominant
NVMe protocol, carried over a TCP or RDMA-based network transport.
The key innovation in NeSt is end-to-end (E2E) QoS differentiation across
multiple classes of service. This is done by conveying the class designation
end to end and using it to consistently but independently apply the differ-
entiation in each segment of the path. NeSt contains the ability to provide
end-to-end QoS differentiation under a variety of traffic situations including
both large block accesses (4KB or larger) to traditional storage and small
accesses (a few cachelines) to the emerging persistent memory devices.

We will open-source NeSt to enable the storage community at large to
not only use it but also enhance it in multiple possible directions. One very
useful enhancement is to implement the logical volume manager (LVM) func-
tionality whereby the storage can be allocated flexibly across multiple SSDs.
A related aspect is coupling LVM with high-performance data layouts such as
striping blocks across multiple SSDs. With the emergence of computational
storage, it would be interesting to explore some generic functionalities in
optimizing the storage transfers based on the end-to-end class hinting mech-
anism discussed in this paper. Intelligent prefetching is one such function
where the aggressiveness of the prefetching could be QoS class-dependent.
This prefetching may be limited only to the SSD cache or PM, from where

26



it could be fetched directly on demand for all but the data with a high reuse
rate. This would be an extension of our FussyCache concept [44]. Many
other extensions such as inclusion of a CPU model, transactional PM, era-
sure coding, and support for QRDMA, are also possible and would be highly
useful for emerging storage applications.

References

[1] I. Gorton, P. Greenfield, A. Szalay, R. Williams, Data-intensive com-
puting in the 21st century, Computer 41 (4) (2008) 30–32.

[2] R. Davis, The network is the new storage bottleneck, https://www.
datanami.com/2016/11/10/network-new-storage-bottleneck/

(2016).

[3] B. Tallis, The samsung 970 evo plus (250gb, 1tb) nvme
ssd review, https://www.anandtech.com/show/13761/

the-samsung-970-evo-plus-ssd-review/5 (2019).

[4] S. Zheng, M. Hoseinzadeh, S. Swanson, Ziggurat: A tiered file sys-
tem for non-volatile main memories and disks, in: Proceedings of the
17th USENIX Conference on File and Storage Technologies, FAST’19,
USENIX Association, USA, 2019, p. 207–219.

[5] Nvm express base specification, rev 1.4, https://nvmexpress.org/wp-
content/uploads/NVM-Express-1 4-2019.06.10-Ratified.pdf (June
2019).

[6] J. D. Allen, J. Metz, The evolution and future of nvme, Webminar, Jan
2018 (2018).

[7] Nvm express over fabrics revision 1.1, https://nvmexpress.

org/wp-content/uploads/NVMe-over-Fabrics-1.1-2019.10.

22-Ratified.pdf (2019).

[8] Introduction to nvme technology, https://www.osr.com/nt-insider/
2014-issue4/introduction-nvme-technology/ (2014).

[9] S. Akram, Performance evaluation of intel optane memory for managed
workloads, ACM Transactions on Architecture and Code Optimization
(TACO) 18 (3) (2021) 1–26.

27



[10] J. Gupta, K. Kant, A. Pal, J. Biswas, Configuring and coordinating
end-to-end qos for emerging storage infrastructure, ACM Trans. Model.
Perform. Eval. Comput. Syst. 9 (1) (jan 2024). doi:10.1145/3631606.
URL https://doi.org/10.1145/3631606

[11] B. Wang, Z. Qi, R. Ma, H. Guan, A. V. Vasilakos, A survey on data
center networking for cloud computing, Computer Networks 91 (2015)
528–547.

[12] What is Persistent Memory Region? - NVM Express
— nvmexpress.org, https://nvmexpress.org/faq-items/

what-is-persistent-memory-region/, [Accessed 28-01-2024].

[13] J. Shin, J. W. Kim, C.-C. Kuo, Quality-of-service mapping mechanism
for packet video in differentiated services network, IEEE Transactions
on Multimedia 3 (2) (2001) 219–231.

[14] N. Schelten, F. Steinert, A. Schulte, B. Stabernack, A high-throughput,
resource-efficient implementation of the rocev2 remote dma protocol for
network-attached hardware accelerators, in: 2020 International Con-
ference on Field-Programmable Technology (ICFPT), IEEE, 2020, pp.
241–249.

[15] A. P. Joyanta Biswas, Krishna Kant, Qos aware tcp for
data center network (qtcp), Proc. of LCN (Oct 2021).
doi:10.1109/LCN52139.2021.9524967.

[16] A. Varga, R. Hornig, An overview of the omnet++ simulation environ-
ment, in: 1st International ICST Conference on Simulation Tools and
Techniques for Communications, Networks and Systems, 2010.

[17] J. Prokkola, Opnet-network simulator, URL http://www. telecomlab.
oulu. fi/kurssit/521365A tietoliikennetekniikan simuloinnit ja tyoka-
lut/Opnet esittely 7 (2006).

[18] G. F. Riley, T. R. Henderson, The ns-3 network simulator., in: Modeling
and Tools for Network Simulation, Springer, 2010, pp. 15–34.
URL http://dblp.uni-trier.de/db/books/collections/

Wehrle2010.html#RileyH10

28



[19] F. Keti, S. Askar, Emulation of software defined networks using mininet
in different simulation environments, in: 2015 6th International Confer-
ence on Intelligent Systems, Modelling and Simulation, IEEE, 2015, pp.
205–210.

[20] Welcome to FIO&x2019;s documentation! &x2014; fio 3.36 documenta-
tion — fio.readthedocs.io, https://fio.readthedocs.io/en/latest/
index.html, [Accessed 03-02-2024].

[21] W. D. Norcott, Iozone filesystem benchmark, http://www. iozone. org/
(2003).

[22] R. McDougall, J. Mauro, Filebench (2005).

[23] S. Li, D. Li, D. Wu, X. Chen, Nvmfs-iozone: Performance evaluation
for the new nvmm-based file systems, in: Proceedings of the 13th ACM
International Systems and Storage Conference, 2020, pp. 87–97.

[24] F. Paladin, D. R. Adams, et al., Zion file system simulator, Journal of
Computer and Communications 4 (04) (2016) 10.

[25] S. Di Girolamo, P. Schmid, T. C. Schulthess, T. Hoefler, Simfs: a simula-
tion data virtualizing file system interface, in: 2019 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), IEEE, 2019,
pp. 621–630.

[26] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, O. Mutlu,
Mqsim: A framework for enabling realistic studies of modern multi-
queue ssd devices, in: Proceedings of the 16th USENIX Conference on
File and Storage Technologies, FAST’18, USENIX Association, USA,
2018, p. 49–65.

[27] J. Yoo, Y. Won, J. Hwang, S. Kang, J. Choi, S. Yoon, J. Cha, Vssim:
Virtual machine based ssd simulator, in: 2013 IEEE 29th Symposium
on Mass Storage Systems and Technologies (MSST), IEEE, 2013, pp.
1–14.

[28] Y. Kim, B. Tauras, A. Gupta, B. Urgaonkar, Flashsim: A simulator for
nand flash-based solid-state drives, in: 2009 First International Confer-
ence on Advances in System Simulation, IEEE, 2009, pp. 125–131.

29



[29] J. S. Bucy, G. R. Ganger, et al., The DiskSim simulation environment
version 3.0 reference manual, School of Computer Science, Carnegie Mel-
lon University, 2003.

[30] M. Jung, J. Zhang, A. Abulila, M. Kwon, N. Shahidi, J. Shalf, N. S.
Kim, M. Kandemir, Simplessd: Modeling solid state drives for holistic
system simulation, IEEE Computer Architecture Letters 17 (1) (2017)
37–41.

[31] T. Goyal, A. Singh, A. Agrawal, Cloudsim: simulator for cloud comput-
ing infrastructure and modeling, Procedia Engineering 38 (2012) 3566–
3572.

[32] M. R. Chowdhury, M. R. Mahmud, R. M. Rahman, Implementation and
performance analysis of various vm placement strategies in cloudsim,
Journal of Cloud Computing 4 (1) (2015) 1–21.

[33] B. Wickremasinghe, R. N. Calheiros, R. Buyya, Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing environ-
ments and applications, in: 2010 24th IEEE international conference
on advanced information networking and applications, IEEE, 2010, pp.
446–452.

[34] P. B. Patil, K. S. Bhagat, D. Kirange, S. Patil, Software defined networks
using mininet, Int. J. Recent Technol. and Eng 9 (1) (2020) 843–849.

[35] J. Ahrenholz, C. Danilov, T. R. Henderson, J. H. Kim, Core: A real-time
network emulator, in: MILCOM 2008-2008 IEEE Military Communica-
tions Conference, IEEE, 2008, pp. 1–7.

[36] W. Du, H. Zeng, K. Won, Seed emulator: an internet emulator for
research and education, in: Proceedings of the 21st ACM Workshop on
Hot Topics in Networks, 2022, pp. 101–107.

[37] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, O. Mutlu,
{MQSim}: A framework for enabling realistic studies of modern {Multi-
Queue}{SSD} devices, in: 16th USENIX Conference on File and Storage
Technologies (FAST 18), 2018, pp. 49–66.

[38] M. Böther, O. Kißig, L. Benson, T. Rabl, Drop it in like it’s hot: An
analysis of persistent memory as a drop-in replacement for nvme ssds, in:

30



Proceedings of the 17th International Workshop on Data Management
on New Hardware, 2021, pp. 1–8.

[39] T. Roy, J. Gupta, K. Kant, A. Pal, D. Minturn, A. Tavvakol, Man-
aging ssd tail latency with plm, Proc. of NAS Conference (Oct 2021).
doi:10.1109/NAS51552.2021.9605470.

[40] T. Roy, J. Gupta, K. Kant, A. Pal, D. Minturn, Plmlight: Emulating
predictable latency mode in regular ssds, Proc. of IEEE NCA conference
(Nov 2021). doi:10.1109/NCA53618.2021.9685772.

[41] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang, G. Cao,
J. Stern, V. Verma, L. E. Paul, Spdk: A development kit to build high
performance storage applications, in: 2017 IEEE International Confer-
ence on Cloud Computing Technology and Science (CloudCom), IEEE,
2017, pp. 154–161.

[42] Y. Zhang, P. Huang, K. Zhou, H. Wang, J. Hu, Y. Ji, B. Cheng, OSCA:
An Online-Model based cache allocation scheme in cloud block storage
systems, in: 2020 USENIX Annual Technical Conference (USENIX
ATC 20), USENIX Association, 2020, pp. 785–798.
URL https://www.usenix.org/conference/atc20/presentation/

zhang-yu

[43] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, G. R. Ganger,
Prioritymeister: Tail latency qos for shared networked storage, in: Pro-
ceedings of the ACM Symposium on Cloud Computing, SOCC ’14, As-
sociation for Computing Machinery, New York, NY, USA, 2014, p. 1–14.
doi:10.1145/2670979.2671008.
URL https://doi.org/10.1145/2670979.2671008

[44] J. Gupta, K. Kant, Fussycache: A caching mechanism for emerg-
ing storage hierarchies, Proc. of IEEE CloudCom (Dec 2020).
doi:10.1109/CloudCom49646.2020.00010.

31


