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Abstract. Automated student engagement recognition in online learn-
ing is crucial as it enables the teachers to adapt the content delivery to
improve learning. In this paper, we explore a method that finetunes a pre-
trained vision language model (VLM) to recognize student engagement
markers. Our model learns to avoid incorrect answers during finetun-
ing by using the emerging direct preference optimization techniques on
self-generated preference pairs based on the correct and incorrect VLM
answers. On publicly available student engagement datasets, our model
shows superior performance over other approaches and substantially bet-
ter generalizability over the traditional vision methods.
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1 Introduction

With the development of network and multimedia technology, online learning
environments have become viable in education at all levels. Its adoption has
skyrocketed following the COVID-19 pandemic. Online learning is now well-
entrenched and increasingly preferred because of its numerous benefits both
to the students (e.g., avoidance of physical transportation) and the providers
(e.g., lower cost and ability to handle larger classes). However, online learn-
ing has some definite disadvantages due to the inability of the instructor to
make face-to-face contact and assess comprehension or lack thereof. Research
has demonstrated that student engagement provides a positive influence on aca-
demic achievement [1]. In the online learning environment, automated moni-
toring of the student engagement level becomes essential because scanning the
camera feeds from a large number of students is distracting and impractical;
furthermore, it requires that video stream from each student be transmitted to
the instructor. Ideally, we would like to obtain the same kind of assessment that
experienced teachers can easily do in real classrooms without the necessity to
transmit student videos.

Traditionally, visual behavior recognition has been done via specially de-
signed deep learning models that must be trained on well-crafted labeled datasets.
While such methods can do extremely well in recognizing the targeted behaviors,
they are limited by the difficulties in model crafting and the creation of good
quality and varied training datasets. They also tend to struggle in generalizing
well to out-of-distribution samples, as shown in our experiments.
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Large Vision-Language Models (VLM) have recently been researched exten-
sively to provide good descriptions (or "captions") of activities in images and
short video segments. In this paper, we focus on determining how well the stu-
dents are engaged in a virtual classroom environment. Video analytics deter-
mines this primarily based on the facial expressions and gestures, although the
VLM based method explored here considers all visual features implicitly. We
explore an open-source Vision Language Model, MiniGPT-4 [2] with Vicuna [3],
a multi-modal chatbot based on LLaMA [4]. We further finetune it for a few
student engagement marker tasks.

To enhance the generalizability of the model, we propose a novel variant
of Direct Preference Optimization (DPO) [5] method that finetunes the VLM
using self-generated preference pairs. In particular, we design a specialized DPO
finetuning method that yields a VLM capable of accurately predicting student
engagement markers from images (Sec. 2.2). Our design includes a self-generation
pipeline to capture the broad distribution of the generated answers so that the
preference pairs used to optimize the VLM can capture the actual distribution
of incorrect answers. The proposed specialized DPO finetuning can be applied
in any scenario with a labeled dataset.

We compare our finetuning results with various deep learning-based vision
models and show that our method performs substantially better in predicting
student engagement markers. We also evaluate the generalizability of our fine-
tuned model to out-of-distribution samples by applying it to a different dataset.
We focus on analyzing still images as opposed to videos since recent image-based
VLMs are able to run on end-user devices in real-time, e.g., Llama 3.2 (Meta)
and Molmo (Allen AI).

The rest of the paper is organized as follows. Section 2 describes the essential
finetuning details of our method on the student engagement dataset. Section 3
explains the experimental setup, compares our method to other vision and VLM
models, and analyzes the results. Finally, section 4 concludes the paper.

2 Methodology

2.1 Reinforcement Learning with Human Feedback

One challenge in training LLMs and VLMs is that it is difficult to measure
the quality of output from these models automatically. Reinforcement Learning
with Human Feedback (RLHF) provides a way for humans to be a source of
the reward model without explicitly modeling the rewards. In LLMs and VLMs,
RLHF is used to finetune the models, getting humans to choose between various
outputs and learning a model to estimate the rewards.

Pretaining stage trains the language model to predict the next token given
the prior text information using the large collection of datasets for natural lan-
guage processing tasks. The loss used in the pretraining stage is normally the
cross-entropy loss.

Supervised Fine-tuning (SFT) stage finetunes the pre-trained language
model on datasets for specific downstream tasks. The datasets are normally
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high-quality datasets with appropriate instructions (prompts) and reasonable
responses. The model obtained after the SFT finetuning is denoted as πref .

Preference sampling and Reward Learning: For a dataset D, for each
input x, there is a pair of preferred/dispreferred answers (yω, yι), where yω de-
notes the answer that human labelers expressed preference for and yι denote the
dispreferred answer. We can model this by a latent reward model r∗ that gener-
ates the underlying preferences. A commonly used approach to model preferences
is assuming the probability p∗(yω ≻ yι|x), which represents the probability of
preferring answer yω over answer yι, as a sigmoid σ of the reward difference

p∗(yω ≻ yι|x) = σ(r∗(x, yω)− r∗(x, yι)) (1)

We need to use a reward model rϕ to estimate the true reward of human pref-
erence via maximum likelihood since the true reward function is not accessible.
For this, we minimize the negative log-likelihood loss.

LR(rϕ, D) = −Ex,yω,yι∼D[log σ(rϕ(x, yω)− rϕ(x, yι))] (2)

Reinforcement Learning Optimization: This phase uses the learned re-
ward function to further optimize the language model. To prevent model collapse
and maintain the proximity to the distribution of reference model πref , a KL
divergence penalty is added.

max
πθ

Ex∼D,y∼πθ(y|x)[rϕ(x, y)]− βDKL[πθ(y|x) ∥ πref (y|x)]

where πθ is the policy model that RLHF is optimizing, and β is the hyperpa-
rameter to restrict how far the model can deviate from the base reference model.
Due to the non-differentiability, the objective is normally optimized with an RL
algorithm such as Proximal Policy Optimization (PPO) [6]. PPO is a policy
gradient algorithm that uses an objective function to find the best policy. The
objective function minimizes the difference between the new and old policy. As a
result, PPO avoids too large a policy update which may destabilize the learning.

2.2 Direct Preference Optimization

Direct Preference Optimization (DPO) [5] provides a simplification of tradi-
tional feedback-aligned LLMs. DPO avoids the Reinforcement Learning (RL)
loop as RLHF and instead proposes a closed-form loss using a special choice
of reward model parameterization in equation 2. Equation 3 shows the DPO
loss, where yω is the preferred answer, yι the dispreferred answer, πθ the policy
model being optimized, and πref is the constraining reference model. The ref-
erence model provides stability in training and baseline for the policy model to
improve against.

LDPO(πθ, πref ) = −E
[
log σ

(
β log

πθ(yω|x)
πref (yω|x)

− β log
πθ(yι|x)
πref (yι|x)

)]
(3)

One can rewrite the DPO loss to show that it maximizes the margin between
preferred and dispreferred answer pairs:

rω = log(πθ(yω|x))− log(πref (yω|x)) rι = log(πθ(yι|x))− log(πref (yι|x))
LDPO(πθ, πref ) = −E[log σ(β(rω − rι))] (4)
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For the student engagement detection problem, we work with multi-class la-
beled datasets where the labels indicate the different engagement behaviors of
the student. Therefore, we propose to transform the labeled datasets to prefer-
ence dataset D =

{
xi, yiω, y

i
ι

}N

i=1
, where N denotes the number of data samples.

For each input image x, we assign an answer pair of preferred answer and dis-
preferred answer (yω, yι). A simple approach is to utilize the given ground truth
to generate a preference dataset by using the given label of each image as the
preferred answer yω and using the other labels in the dataset as the dispreferred
answer yι. However, this approach will introduce bias to the vision-language
model since the distribution of possible dispreferred answers has a much wider
range.

Preferred Dispreferred

Frozen Reference MiniGPT-4

Policy MiniGPT-4

Preferred log probabilities

Dispreferred log probabilities

Preferred log probabilities

Dispreferred log probabilities

Update

DPO Loss

Student
Image

Question

Wrong Answer

Rejected Reference Sentence

Fig. 1: DPO based Finetuning using a frozen reference & policy model.

In order to yield better answers, we propose to extend the reference data pairs
D so that the dispreferred answers yiι come from a more general distribution
than ground truth. Since we do not have the distribution of generated answers
of the vision-language model, we use the wrong answers generated from
the vision-language model itself to generate the dispreferred answers.
In practice, we form the dispreferred answers during training in the following
manner. For a percentage of the time, if the generated answers from the Policy
MiniGPT-4 are incorrect, we use these as dispreferred answers. Otherwise, if the
generated answers are correct, we randomly choose from other labels besides the
correct label as the dispreferred answers. For our experiments, this was done 30%
of the time. The architecture of the DPO based finetuning is shown in Figure 1.
We give example training pairs in the next section.

The probability πθ(y|x) of any generated answer y is simply the product
of the probabilities of its generated tokens. In contrast, when the answer y is
provided, in order to compute πθ(y|x), we only need to score how likely the LLM
is to generate y if prompted with x. For this, we input x concatenated with y to
the LLM and collect the log probabilities of all y tokens token by token.

2.3 Finetuning MiniGPT-4 on Engagement Datasets

We finetune MiniGPT-4 on the dataset using a set of prompts that are relevant to
the student engagement problem. In order to achieve more general performance,
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we optimize the MiniGPT-4 model with DPO using automatically generated
preference pairs.

In our model, we introduce a finetuning that aims to generate specific im-
age descriptions to describe behaviors or affective states indicating engagement
levels of students. To be more specific, our approach uses student engagement
categorization from the Student Engagement Dataset (SED) [7], the DAiSEE
dataset [8], and the EngageNet dataset [9]. SED captures three student engage-
ment markers. DAiSEE and EngageNet has four levels of engagement labels for
each sample.

The following is an example of how we finetune with the SED dataset. SED
uses the labels: ‘looking at the paper’, ‘looking at the screen’, and ‘wandering’.
We set the corresponding correct reference sentence as follows:

The person is looking down at the paper
The person is looking straight at the screen
The person is looking away

Since DAiSEE and EngageNet are composed of videos only, we subsampled
them with a frequency 1 frame per second (fps), resulting in 10 frames per video
clip. The 10 images are concatenated together and inserted into the finetuning
and the VLM is asked to classify the student into one of "Highly-Engaged",
"Engaged", "Barely-Engaged", and "Not-Engaged" classes.

Now we give two examples of preferred and dispreferred answers used for
DPO finetuning. The VLM generated a wrong answer: ’Yes, the person is looking
away. The blue headband is tied around their hair ...’ We use it as a dispreferred
answer, while the correct answer, ’The person is looking straight at the screen.’
is used as the preferred answer. On the other hand, if the VLM generated a
correct answer for a different image, ’The person is looking away.’, we use it as
a preferred answer and randomly select one of the remaining two answers as a
dispreferred answer. ’The person is looking down at the paper.’

We use the same prompt template as MiniGPT-4. The instruction of MiniGPT-
4 is randomly sampled from a predefined instruction set which contains different
instructions for the image caption task. It is well-known that prompting can
influence the output of LLMs [10]. In our finetuning, we use the instruction set
containing questions that are used specifically to determine the students’ be-
havior. After extensive experimentation with Vicuna, the instruction set (when
our goal is a natural language output) is chosen due to the consistently better
performances. The following shows one example of our prompts:

Given the following image: <Img>ImageContent</Img>. You will be able to see the image once
I provide it to you. Please answer my questions.

###Human: <Img><ImageFeature></Img> Is the person looking straight at the screen? Is
the person looking down at the paper? Is the person looking away?
###Assistant:

During the finetuning, one of the questions is selected randomly from the in-
struction set. We found experimentally that using questions in this way produced
a higher baseline.
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Additionally, since the output in JSON format is easy to evaluate with key-
word search, we use the following query to enforce Vicuna to respond in JSON
format:

<Img><ImageHere></Img> Given label set:[’looking at the screen’,’looking at the paper’,’
wandering’] Question: What is the type of activity in the image and which category from the
given label set would you use to describe this activity type? Answer me in the JSON format like
{’label’: ’activity_type’}

We evaluated two different versions of the MiniGPT-4 model in our experi-
ments. One version is that we perform our finetuning using the MiniGPT-4 (Vi-
cuna) checkpoint. Another version is that we perform our finetuning after using
the MiniGPT-4 (Llama2) checkpoint. MiniGPT-4 (Vicuna) achieves an accu-
racy of 95.2% after our finetuning whereas MiniGPT-4 (Llama2) yields 88.6%.
Therefore, we use MiniGPT-4 (Vicuna) as our base model.

3 Performance Evaluation

3.1 Datasets Used

Our evaluation utilizes three public datasets, Student Engagement Dataset (SED)
[7], DAiSEE dataset [8] and EngageNet [9]. SED contains both an unbalanced
and balanced component. The unbalanced one contains 18,721 frames sampled
at one fps from 400 videos collected from 19 students. It has samples divided into
3 categories ’looking at the paper’, ’looking at the screen’, or ’wandering’. The
first two are considered as “engaged" since the completion of their tasks requires
one of those two activities. Note that “wandering" means that the student is
not engaged (it does not mean “wandering-around"). The balanced dataset is a
smaller 1973 frame version that removes similar samples for each of the three
classes, resulting in a more balanced number of frames across the classes.

DAiSEE dataset is a large labeled student engagement level dataset that is
collected by a web camera during the period of a student watching educational
and recreational videos. The dataset contains 9068 video snippets collected from
32 female and 80 male subjects aged 18 to 30. The dataset is labeled with four
different student engagement levels: Very Low, Low, High, and Very High. In
addition to these engagement labels, we relabeled a subset of DAiSEE with
SED labels for out-of-distribution evaluation with the model trained using SED
dataset. The goal is to evaluate whether the model can apply the knowledge
learned from the student engagement dataset to an out-of-distribution dataset
under the same premise that both the DAiSEE and SED datasets have stu-
dents in front of a web camera. With this premise, we annotated the DAiSEE
dataset according to the evaluation framework of SED with labels ’looking at
their paper’, ’looking at their screen’, and ’wandering’.

We have also identified 85 samples (hard samples) from SED that were se-
lected based on misidentification by MiniGPT-4, which we call the hard SED
dataset. These hard samples tend to contain images of students that face one di-
rection whilst their gazes face one another, or students’ face not being contained
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Fig. 2: Example hard samples we picked that tend to contain images of students face not being
contained with in the image

with in the image. Examples of these hard Samples are shown in Figure 2.
We further evaluated GPT-4V (OpenAI (2023)) as opposed to our finetuning
methodology on this handpicked dataset.

EngageNet is a large-scale, multimodal dataset designed for user engagement
prediction in real-world, in-the-wild settings. It comprises over 11.3K ten-second
video clips (approximately 31 hours of data) from 127 participants recorded un-
der diverse illumination conditions, and it captures both behavioral cues—such
as facial expressions, head pose, and eye gaze—and cognitive responses from in-
teractive questionnaires. Annotated into four engagement levels (Not Engaged,
Barely Engaged, Engaged, Highly Engaged) using expert labels and self-reports,
EngageNet provides a rich resource for developing and benchmarking deep learn-
ing models aimed at enhancing user experience in education, human-computer
interaction, and related domains.

3.2 Data Preprocessing and Training

We used 80% of the data samples from the balanced SED dataset for finetuning
and 20% of the samples for our evaluation with balanced data. We also evaluated
our model with the raw SED dataset. We excluded the training balanced sample
from the raw SED dataset and used the rest of the samples for evaluation. For
both training and testing data samples, we combined the labels for the various
categories and created an annotation JSON file that is a collection of data pairs
where each image ID is associated with a reference sentence based on the category
of that image accordingly. The detail of the reference sentence is discussed in
section 2.3. We also compared the results of our finetuning prompts with the
original prompts (Orig-P) used by MiniGPT-4[2]. Additionally, the evaluation
results, using the original MiniGPT-4 checkpoint without finetuning (Orig-M)
on the SED dataset, are shown as the baseline of the MiniGPT-4 model.

For the out-of-distribution evaluation on the DAiSEE dataset, we manually
labeled 1046 frames with the three SED categories, assigned image IDs for each
frame, and constructed an annotation JSON file. The annotation file for this
dataset was constructed in a similar fashion to SED.

The model setup with reference and policy components is memory intensive.
It was run on a system with two Nvidia RTX A6000 GPUs. Training ran with
a global batch size of four. For the finetuning, we use AdamW optimizer. The
learning rate is controlled with a cosine learning rate scheduler. The initial learn-
ing rate is 3e−5, minimum learning rate is 1e − 5 and warmup learning rate is
1e−6. The warmup steps is set to 200. The β used in DPO loss calculation is set
to 0.1. The training time per epoch is about 25 minutes.
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Reference sentence The person is looking straight at the 
screen

The person is looking down at the paper The person is looking away

m-GPT4 & DPO The person is looking straight at the 
screen

The person is looking down at the paper The person is looking away

m-GPT4 & DPO (JSON 
prompts)

{'label': 'looking at the screen’} {'label': 'looking at the paper’} {'label': 'wandering'} 

m-GPT4 (JSON prompts) {'label': 'looking at the screen’} {'label': 'looking at the paper’} {'label': 'looking at the screen'} 

m-GPT4 (SED specific 
prompts)

The person is looking straight at the 
screen

The person is looking down at the paper The person is looking straight at the 
screen

m-GPT4 (Original prompt) The person is looking straight at the 
screen

The person is looking straight at the 
screen

The person is looking away

m-GPT4 (Original model) The person is wearing a blue beanie and
a red scarf and has a pair of headphones
on. The person is looking down at the
paper on the desk in front of them. The
image is a close up of the person's face,
with the headphones on their ears and
the paper in front of them.

The person is looking straight at the
screen. They are not looking down at the
paper or away from the screen.

1. The person is looking straight at the
screen. 2. The person is looking down at
the paper. 3. The person is looking away
from the camera.

Fig. 3: Comparison of the generated sentences using four different MiniGPT-4 based finetuning mod-
els for the three student engagement behavior markers. The image samples are selected from the
SED dataset.

3.3 Assessing Correctness of Generated Answers

We use the output of the model to categorize the student engagements into one
of the engagement labels. To evaluate MiniGPT4’s output from the still-images,
we use three different methods, keyword evaluation, sentence similarity (SS) [11]
evaluation, and the Video-ChatGPT [12] evaluation benchmark of Correctness
and Consistency.

For the keyword evaluation, we consider the output as the correct answer if
the generated sentence contains the desired keywords (i.e. paper, screen, away)
representing the reference sentence. If no keywords match, the response is con-
sidered wrong. Our model, finetuned with DPO, did not return any results with
multiple keywords matching. Though the other models we evaluated did. There-
fore, we need a way to evaluate the meaning of the sentences. For example,
an output generated by MiniGPT-4 (Orig-M) in Figure 3 says, "The person is
looking straight at the screen. They are not looking down at the paper or away
from the screen." Based on its meaning, it should be counted as "The person is
looking straight at the screen" instead of one of the other categories. A keyword
approach would incorrectly categorize the response. To address this issue, we
opted for two other methods that have a deeper understanding of sentences.

For the sentence similarity (SS) evaluation, we use a pretrained sentence
transformer, BGE-M3 [11], to determine whether the generated sentence conveys
the same meaning as the reference sentences. We do this by comparing the
embedding of the generated sentences and the candidate reference sentences
representing the ground truth classes. If the reference sentence has the highest
similarity score among all possible reference sentences, it is marked as correct,
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otherwise, it is marked as incorrect. We use cosine similarity to capture the
semantic similarity of sentence embeddings generated by BGE-M3 [11].

3.4 Results

First, we evaluate the performance of our model using both the accuracy and
F1 score obtained by keyword and SS evaluation. We evaluate the performance
of the finetuned m-GPT4 & DPO models (MiniGPT-4 model finetuned using
DPO) against m-GPT4 models which finetuned differently depending on the
dataset.

For SED dataset, We evaluate the performance of the finetuned m-GPT4
& DPO models with both the natural language prompts and JSP. These are
compared against m-GPT4 models, which includes m-GPT4 model finetuned
using the engagement specific prompt (EnP) we discussed in the previous section,
m-GPT4 finetuned using the original prompts (Orig-P) of the MiniGPT-4 paper
[2], and the original un-finetuned m-GPT4 model (Orig-M). We also compare our
results against the deep learning vision model results. We finetuned MobileNet
and Xception, both pretrained on ImageNet (Pre-IN), on the balanced SED
dataset and obtained similar accuracy results on the balanced SED dataset to
those presented in [7].
Method Acc F1 SS Acc SS F1
m-GPT4 & DPO 96.7 96.7 96.7 96.7
m-GPT4 (EnP) 95.2 95.2 95.2 95.2
m-GPT4 (JSP/DPO) 96.0 95.9 ✕ ✕
m-GPT4 (JSP) 95.2 95.2 ✕ ✕
m-GPT4 (Orig-P) 87.6 87.4 87.6 87.4
m-GPT4 (Orig-M) 58.6 58.9 40.2 39.7
MobileNet (Pre-IN) 94 - ✕ ✕
Xception (Pre-IN) 88 - ✕ ✕
VGG16 (Pre-IN) 85 - ✕ ✕

Table 1: Results on balanced SED.

Method Acc F1 SS Acc SS F1
m-GPT4 & DPO 84.7 84.2 84.7 84.2
m-GPT4 (EnP) 81.2 80.8 81.2 80.8
m-GPT4 (JSP/DPO 85.9 85.6 ✕ ✕
m-GPT4 (JSP) 82.4 82.8 ✕ ✕
m-GPT4 (Orig-P) 70.6 72.1 70.6 72.1
m-GPT4 (Orig-M) 56.5 61.3 31.8 34.7
GPT-4V 74.2 72.6 ✕ ✕
MobileNet (Pre-IN) 82.3 83.5 ✕ ✕
Xception (Pre-IN) 84.7 85 ✕ ✕

Table 2: Results on hard SED samples
Method Acc F1 SS Acc SS F1
m-GPT4 & DPO 94.6 95.8 94.6 95.8
m-GPT4 (EnP) 90.8 92.8 90.8 92.8
m-GPT4 (JSP/DPO) 94.3 95.6 ✕ ✕
m-GPT4 (JSP) 94.1 95.6 ✕ ✕
m-GPT4 (Orig-P) 89.5 90.0 89.2 89.8
m-GPT4 (Orig-M) 50.5 61.2 48.6 57.8
MobileNet (Pre-IN) 89.9 91.3 ✕ ✕
Xception (Pre-IN) 87 87.9 ✕ ✕

Table 3: Results on raw SED.

Method Acc F1 SS Acc SS F1
m-GPT4 & DPO 88.4 87.9 88.5 88.0
m-GPT4 (EnP) 87.1 86.9 87.1 86.9
m-GPT4 (JSP/DPO 87.2 87.1 ✕ ✕
m-GPT4 (JSP) 86.8 87.0 ✕ ✕
m-GPT4 (Orig-P) 88.0 87.7 87.2 87.2
m-GPT4 (Orig-M) 62.2 70.7 56.7 67.3
MobileNet (Pre-IN) 26.7 33.2 ✕ ✕
Xception (Pre-IN) 55.9 65.5 ✕ ✕

Table 4: Results on relabeled DAiSEE samples.
Method Acc F1 SS Acc SS F1
m-GPT4 & DPO 77.1 75.7 71.8 73.0
m-GPT4 (Inst tune) 55.5 40.3 52.5 46.3
ViT Facial Exprn. recog. 54.5 49.3 ✕ ✕
ViT 53.8 47.9 ✕ ✕
EmotionNet 51.1 ✕ ✕ ✕
DAiSEE 57.9 ✕ ✕ ✕

Table 5: DAiSEE engagement levels results

Method Acc F1 SS Acc SS F1
m-GPT4 & DPO 65.1 64.2 62.6 64.4
m-GPT4 (Inst tune) 53.4 48.2 46.3 50.8
ViT Facial Exprn. Recog. 41.1 43.5 ✕ ✕
ViT 45.8 45.5 ✕ ✕
EngageNet 67.6 ✕ ✕ ✕

Table 6: EngageNet engagement levels.

SED Balanced Correctness ↑ Consistency ↑
m-GPT4 & DPO 4.84 3.67
m-GPT4 (EnP) 4.77 3.36
m-GPT4 (Orig-P) 4.42 3.58
SED Raw
m-GPT4 & DPO 4.77 3.70
m-GPT4 (EnP) 4.69 3.27
m-GPT4 (Orig-P) 4.54 3.48
DAiSEE
m-GPT4 & DPO 4.47 3.64
m-GPT4 (EnP) 4.41 3.09
m-GPT4 (Orig-P) 4.43 3.68
SED Hardsamples
m-GPT4 & DPO 4.24 3.54
m-GPT4 (EnP) 4.16 3.45
m-GPT4 (Orig-P) 4.2 3.46

Table 7: Evaluation with GPT-3.5 turbo

We show the evaluation results on the balanced SED dataset in Table 1. As
we can see from this table, our method achieved 96.7% accuracy and F1 score,
substantially better than the ones by the original deep learning vision models.
Interestingly, the JSON prompts (JSP) achieved almost the same result, though



10 No Author Given

did perform a bit worse. The results of VGG16 are taken from [7]. Since they
only report the accuracy, the other results for these methods are left blank. In
all the tables, an ✕ denotes the sentence similarity is not relevant to the model.

On the evaluation of hard samples of SED (see Table 2), m-GPT4 & DPO
model with JSON output performed the best, and this time it is better than
m-GPT4 & DPO model with natural language output. Both m-GPT4 & DPO
models significantly outperformed GPT-4V results. We also maintain superior
performance compared to other m-GPT4 based models. At the same time, we
find it interesting that the hard samples cause all the m-GPT4 models to perform
worse. This performance hit does not manifest in the purely vision models.

For the out-of-distribution evaluation on raw SED dataset, our model out-
performed the other models across all four measures (see Table 3). On the un-
balanced, raw dataset, our model performs a bit worse compared to itself on
the balanced dataset. Interestingly, the results of m-GPT4 (Orig-P) outperform
itself on the unbalanced raw dataset compared to the balanced dataset. We sus-
pect that even though m-GPT4 (Orig-P) is trained on the balanced dataset, it
is skewing toward the predominant class found in the raw unbalanced dataset.

Table 4 shows the out-of-distribution evaluation results on the relabeled DAiSEE
dataset. Again both versions of m-GPT4 & DPO exhibit the best performance
across all evaluation measures, and JSON prompt performs slightly worse than
the engagement specific prompt. This shows the generalization ability of the
proposed approach since DAiSEE is an out-of-distribution dataset. In contrast,
the results of MobileNet and Xception drop significantly, which clearly shows
that they are not able to generalize well to out-of-distribution samples.

Tables 5 and 6 show our results on DAiSEE and EngageNet datasets us-
ing their original labels. Again, m-GPT4 & DPO model exhibits the best per-
formance. Interestingly, it outperforms EmotionNet, which aims to recognize
emotions in video data, even though we used only 10 frames from each video.
m-GPT4 & DPO model does a bit worse than EngageNet. We believe that is be-
cause EngageNet was specifically designed to capture Eye Gaze, Head Pose, and
Facial Action Units, which results in the better performance when determining
the four levels of engagement, but that may not translate.

We also used GPT-3.5 turbo to evaluate the correctness of the natural lan-
guage answers following the protocol described in [12]. The evaluation with GPT-
3.5 turbo (see Table 7) outputs scores range from 0 to 5 for Correctness and
Consistency, signifies the level of alignment between the model output and the
ground truth. We find that these evaluation results are consistent with the key-
word and Sentence Similarity evaluation results for both the SED and DAiSEE
datasets. The proposed method (m-GPT4 & DPO) consistently scores higher
across almost all evaluated datasets and performance measures.

4 Conclusions and Future Work

In this paper, we focused on the task of accurate recognition of engagement rel-
evant visual behavior markers using VLMs. We exploited the direct preference
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optimization (DPO) approach and proposed a modification to its finetuning that
uses the model’s responses to strengthen its performance. Unlike other preference
alignment models, the proposed DPO finetuning generates preference data pairs
using the wrong answers generated by the policy model during finetuning. This
approach, which are finetuned to the student engagement domain, can leverage
pretrained VLMs. This makes the proposed approach easily extensible for recog-
nizing a large variety of visual markers relevant to engagement. We showed that
our model’s performance is superior to both pure vision models and other fine-
tuning methods. We also demonstrated the generalizability to out-of-distribution
samples, which is important for real-life applications.
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