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Accurate modeling of system performance as a function of various configuration variables (CVs) requires performance measurement for
a diverse set of configurations. However, the available data is often limited and covers only a small portion of the configuration space,
making it insufficient for robust modeling. Collecting additional data is both expensive and challenging, particularly in production
environments where measurements are time-consuming and may inconvenience users. In this paper, we introduce an Intelligent
Configuration Space Coverage (ICSC) methodology that identifies the regions of the configuration space where additional performance
measurements would be most beneficial for accurate modeling, while explicitly limiting the number of such measurements required.
We demonstrate that our methodology substantially enhances the accuracy of performance predictions compared to methods that
choose the data points randomly or via simple considerations of gaps in the CV values. Furthermore, We show that the methodology
is highly valuable even for semi-supervised learning scenarios where no new measurement campaign is needed.
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1 INTRODUCTION

A fundamental challenge in data-centric modeling is ensuring the adequacy and diversity of available data, as well
as addressing the difficulty of collecting additional diverse data. For example, data collection may require specialized
equipment, setup time, human participation (as in biomedical experiments), or interruptions in normal functioning,
especially when it involves human body measurements. Therefore, careful consideration is needed when determining
both the number of cases to examine and their specific characteristics before conducting experiments. A prominent
example, which we focus on in this paper, is evaluating the performance of an enterprise system across diverse
configurations of its parameters.

The achievable performance of an enterprise system invariably depends on the specific values of numerous hardware
and software configuration variables (CVs)[1]. Adequately characterizing the performance (denoted as 𝑦) as a function
of configuration vector (𝑥) requires a diverse set of (𝑥,𝑦) pairs. This is particularly true for machine learning-based
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characterization [2–4], which is often necessitated due to the complexity of the behavior of 𝑦 wrt 𝑥 , and extensive but
poorly understood dependencies across CVs (i.e., the components of 𝑥 ).

Unfortunately, the available data is often not very diverse, since it largely concerns a small number of configurations
that were tried out on the production system [5]. This remains true despite the existence of a large amount of such data

– most of it concerns dynamic factors like the utilization levels of different resources, rather than varied values of CVs.

Furthermore, production systems do not allow arbitrary configuration changes, and translating configuration from a
test system to a production system is often difficult or even impossible [6, 7].

In view of these difficulties, the key question that we answer in this paper is as follows: Given an existing set
of data points (𝑥𝑖 , 𝑦𝑖 ), 𝑖 = 1, . . . , 𝑁 and the willingness to collect at most 𝐾 additional data points, where should
these be located in the configuration space? That is, we want to seek the most informative additional configurations
𝑥 𝑗 , 𝑗 = 𝑁 +1, . . . , 𝑁 +𝐾 for which the measurements should be performed to improve the accuracy of system performance
models.

To address this challenge, we propose Intelligent Configuration Space Coverage (ICSC)—a methodology that system-
atically identifies the most informative regions of the configuration space for additional data collection. ICSC aims
to optimize data selection by leveraging structured exploration rather than random selection or simple space-filling
techniques. The approach applies broadly to any field where data collection is expensive, such as biomedical research,
industrial experimentation, and enterprise system configuration. The coverage aspect has not received much attention
in the literature, which is primarily focused on analyzing the available data. Often, the 𝑥𝑖 ’s are chosen randomly in the
context of generating additional artificial data, such as in a semi-supervised learning (SSL) context [8, 9], which too are
focused on generating reliable labels (𝑦𝑖 ’s) for the added data. We henceforth denote the random addition as RAND, and
show that ICSC works substantially better than RAND in the context of improving the label (or 𝑦) predictions with the

help of additional data.When faced with the issue of choosing additional 𝑥𝑖 ’s to conduct additional experiments, people
might also use simple space-filling techniques, such as looking for the largest gaps in the 𝑥𝑖 values in the existing
labeled data and choosing points to reduce them. This can be considered as a greedy algorithm, henceforth called
GREED. We show that ICSC works substantially better than GREED as well.

A true evaluation of such a methodology would require access to an enterprise system to obtain real 𝑦 𝑗 ’s for the
intelligently chosen 𝑥 𝑗 ’s. Instead, we use the publicly available datasets that record performance against configuration
parameter values. Such datasets themselves are difficult to come by since most of them simply record performance as
a function of resource utilization and the like, rather than true configuration variable values. Any such dataset will
not provide the 𝑦 value for arbitrary 𝑥 ; doing so requires a model. We experimented with a large number of standard
machine learning methods to predict 𝑦 as a function of 𝑥 and chose the best-performing model for each dataset. This
quest did include methods like Kriging (Gaussian regression) [10, 11] and Bayesian optimization [12–14], which are
popularly used to estimate 𝑦’s from 𝑥 ’s by explicitly taking into account the correlations in the 𝑥 domain. We also
explored standard SSL methods, whose goal is again to improve the estimate of𝑦 based on limited labeled data. Typically,
SSL methods choose the 𝑥 values for new data points arbitrarily, but in our case, we employ ICSC to determine the 𝑥
for the unlabeled data points. We show that this strategy helps SSL algorithms as well.

In summary, the contributions of this paper are as follows:

• We introduce a novel mechanism called ICSC to fill the gaps in the configuration space, and thereby provide valuable
guidance for planning the collection of additional experimental data subject to the practical limitations and domain-
specific constraints of such an endeavor.
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• We develop a quantitative metric to assess the coverage and effectiveness of the generated configurations.
• Through comprehensive experimental evaluation on multiple datasets, we demonstrate significant improvements in
the accuracy of performance predictions when ICSC is used for generating 𝑥𝑖 ’s as compared to the random or greedy
selection of data points.

To the best of our knowledge, this is the first contribution that systematically addresses the limitations of data
availability in configuration studies by intelligently generating and validating a targeted selection of new configuration
data points, ensuring a comprehensive and efficient exploration of the configuration space. The code for our ICSC
methodology is available online1.

The rest of the paper is organized as follows: Section 2 discusses the background. Section 3 outlines the steps in the
ICSC methodology. Section 4 covers the detailed experimental evaluation. Section 5 then concludes the discussion.

2 BACKGROUND

In an enterprise IT infrastructure, optimizing system performance by accurately configuring various system parameters
is challenging due to their complexity and interdependencies. These CVs span hardware, OS, software, and workload
parameters. With the widespread use of virtualization, standard hardware parameters (e.g., CPU cores, memory size,
storage, and network BW) can be set dynamically. The non-linear and unpredictable interactions among CVs create
a complex landscape, making it difficult to find the optimal configuration for a given workload [1]. The correct
configuration is crucial for good system performance, but the task is daunting due to the many possible configurations
and their unpredictable performance impacts [5, 15]. System administrators often rely on trial and error or rule-of-thumb
approaches, which can be time-consuming and suboptimal [5, 15–18].

Machine learning has recently been used to address the difficulty of characterizing the impact of CVs on performance
analytically [3, 4]. However, successful models that do not suffer from overfitting and are accurate require a substantial
amount of diverse training data [15]. The data in this case would be in the form of the pairs ( ®𝑥,𝑦) where ®𝑥 is the
configuration vector and 𝑦 is the corresponding performance. Unfortunately, the configurations ®𝑥 for which the 𝑦
value is available are generally quite limited, largely corresponding to the “good" configurations that have been tried
out [6, 7].

Experimentation with new configurations is further constrained by operational risks and resource limitations in
production environments. Test systems, while useful, often differ significantly in scale and hardware, making data
collection challenging and expensive [19, 20]. Given these constraints, identifying a small set of additional configurations
that can maximize the diversity of the training dataset is critical. A careful choice of configurations can substantially
improve the accuracy of Machine learning models compared to arbitrary or random data augmentation strategies.
We show that a careful choice of ( ®𝑥,𝑦) pairs can substantially enhance the accuracy of the performance
prediction models compared to an uninformed data augmentation.

Even when additional configurations are carefully chosen, they may not provide sufficient data for training a standard
Supervised Learning model. SSL [8, 9] can address data inadequacies by augmenting the real data with artificially
generated ®𝑥 values for which the 𝑦 values are not obtained via experimentation but estimated from the labeled data
itself. There are many SSL techniques, however, their success depends on how the artificial data is generated and
used [8, 21, 22].

1https://github.com/AnonUser-sudo-sys/ICSC
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Various SSL techniques such as self-training and co-training have been explored in [21]. Self-training [23] involves
further training the original supervised learning classifier using both original and pseudo-labeled data. An expectation-
maximization (EM) approach can be applied, where all unlabeled data is included at once, iteratively adjusting parameters
to maximize the likelihood that the data fits the assumed label distribution. For example, Wu et al. [24] use Naive
Bayes for classification, assuming each dimension independently contributes to the label and estimating the mean and
variance to fit a normal distribution for continuous variables or a binomial model for discrete values. Pseudo-labeled
data may be given a lower weight than original data, either directly or through a hyperparameter.

Co-training involves training 𝐾 ≥ 2 distinct classifiers on the labeled dataset and generating pseudo-labeled data
for each other. Data with a confidence level above a threshold is used for further training. If classifiers are strongly
correlated, they may produce similar labels, negating the benefit of multiple classifiers. Diversity can be natural (e.g.,
multi-modal datasets) or induced by focusing on different CVs [25]. However, the selected CVs for each classifier must
be sufficient for accurate prediction; otherwise, Co-training could reduce accuracy.

Ref [21] shows that a domain-knowledge-assisted SSL method works substantially better than traditional techniques
that depend on available data for generating pseudo-labels. However, Ref [21] chooses the 𝑥 vectors to label randomly.
Instead, we show that by choosing the ®𝑥 vectors intelligently to fill the state space, we can do significantly better.

Workloads in enterprise environments can be highly variable, adding another layer of complexity to the configuration
challenge. Different applications and services have distinct resource demands, and a configuration that is optimal
for one workload may not be suitable for another [26, 27]. This variability makes it difficult to maintain consistent
performance across different scenarios [28]. Moreover, the interdependencies among CVs can lead to unexpected
interactions, complicating the task of identifying optimal configuration settings [29].

To systematically address the CV sparsity and optimize system configurations, we propose the ICSC method. This
approach is illustrated in Fig. 1(b), demonstrating its application in a 3-D configuration space example shown in Fig. 1(a).
In this example, blue dots • are the original data points, green triangles mark valid gaps identified by ICSC for potential
new configurations, and red crosses × represent invalid gaps that do not meet the criteria for valid configurations.
Together, the red crosses and green triangles make up the complement data. ICSC strategically generates and validates
new configurations to overcome the limitations of existing datasets. This approach involves deliberate and systematic
augmentation of the configuration dataset, either through direct experimental data collection or indirect estimation via
simulation or modeling, ensuring a comprehensive exploration of the configuration space.

3 INTELLIGENT CONFIGURATION SPACE COVERAGE (ICSC) METHODOLOGY

In this section we describe our ICSC approach to generate, filter, cluster, and iteratively refine the additional data points.

3.1 Overview of the ICSC Methodology

ICSC consists of several key steps designed to address the challenges of optimizing system configurations in enterprise
IT environments:

(1) We first identify the uncovered part of the configuration space by calculating the complement set of configurations

missing from the original dataset.
(2) To refine the complement set of configurations into a manageable set, we apply domain-specific filtering rules that

eliminate impractical configurations.
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(a) (b)

Fig. 1. (a) Potential Gaps in the Configuration Space. (b) Overview of the ICSC Design Approach.

(3) We identify and remove configurations that closely resemble existing ones to ensure the dataset retains only the most
representative configurations.

(4) We iteratively apply the clustering algorithm, compute cluster centers, and remove points within a specified distance
from these centers until convergence. The cluster centers represent the potential new data points.

(5) We employ a novel evaluation method to determine whether a cluster center fills a new gap in the multidimensional
data space. This step uses a greedy selection strategy to maximize the diversity and representativeness of the dataset.

(6) We introduce a measure of coverage to quantitatively assess how well the generated configurations span the configura-
tion space, providing a concrete metric to evaluate the effectiveness of ICSC.

3.2 Configuration Space and Variables

The ICSC methodology begins with an exhaustive generation of configuration data points to comprehensively cover
the configuration space. Let ®𝑥 = {𝐶𝑉1,𝐶𝑉2, . . . ,𝐶𝑉𝑁 } denote the set of 𝑁 CVs, each with a range of possible values.
Each 𝐶𝑉𝑗 has a current value between the lower and upper bounds

[
𝑙𝑏𝐶𝑉𝑗 , 𝑢𝑏𝐶𝑉𝑗

]
. The set of all possible combinations

of the CVs’ ranges can be represented as, Sall =
{
®𝑥 | 𝑙𝑏𝐶𝑉𝑗 ≤ 𝑥 𝑗 ≤ 𝑢𝑏𝐶𝑉𝑗 ,∀𝑗 ∈ {1, 2, . . . , 𝑁 }

}
. Here, Sall denotes the set

of all possible configuration vectors ®𝑥 where each element 𝑥 𝑗 is constrained by its respective lower and upper bounds.

3.3 Measure of Coverage

To quantify the effectiveness of ICSC, we define the measure of coverage based on unique combinations of CV pairs
within the configuration space. A unique combination refers to a specific pairing of values from two different CVs. For
example, if the configuration space includes variables such as CPU cores and disk IO, a unique combination could be a
pairing of a particular value of CPU cores with a particular value of disk IO. The measure of coverage evaluates how
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well the generated configurations explore new, previously unrepresented combinations of CV pairs. This is essential for
ensuring diversity and representativeness in the dataset.

To calculate the measure of coverage, we start by considering all possible pairs of CVs. For 𝑁 CVs, there are
𝑁 (𝑁−1)

2 unique pairs. For each pair of CVs, we extract all unique value combinations present in the dataset. Formally,
for a dataset Sall and a pair of CVs (𝐶𝑉𝑖 ,𝐶𝑉𝑗 ), the set of unique combinations is defined as, C(Sall,𝐶𝑉𝑖 ,𝐶𝑉𝑗 ) =

{(𝑥𝐶𝑉𝑖 , 𝑥𝐶𝑉𝑗 ) | (𝑥𝐶𝑉𝑖 , 𝑥𝐶𝑉𝑗 ) ∈ Sall}. Next, we calculate the number of unique combinations for the original dataset
Sorig and the combined dataset Scomb. The combined dataset includes both the original data and the intelligently
generated configurations: Scomb = Sorig ∪ Sopt. We then define the coverage ratios for the original and combined

datasets, denoted as OC and CC, respectively. These ratios are given by OC =
| Corig |
| Call | and CC =

| Ccomb |
| Call | where Corig and

Ccomb are the sets of unique combinations in the original and combined datasets, respectively, and Call is the set of
all possible unique combinations in the configuration space. Finally, we determine the improvement in coverage by
comparing the coverage ratios.

3.4 Initial Refinement of Configuration Data

To enhance the coverage of the configuration space, we adopt a multi-step refinement process. This process begins with
the identification of complement data, which are the configurations absent in the original dataset. The set of complement
configurations, denoted as Scomp, is derived by subtracting the original set of configurations from the universal set of
all possible configurations: Scomp = Sall \ Sorig. This step is crucial for identifying gaps in the configuration space that
need to be explored.

Next, we refine Scomp into a manageable set of configurations by applying a set of filtering rules F based on domain
knowledge in the form of configuration parameter combinations that are considered unreasonable or impractical. Each
filtering rule 𝑓𝑖 is a boolean function, 𝑓𝑖 : Scomp → {0, 1}, designed to enforce these constraints and ensure feasibility.
For example, in a cloud storage environment, domain knowledge might dictate that certain combinations of CPU
and memory configurations are impractical due to hardware limitations or performance degradation under specific
conditions. By incorporating such rules, we ensure that configurations like these are excluded from Scf, resulting in a
dataset that is both relevant and feasible. This approach is validated through previous studies and methodologies that
emphasize the importance of domain-specific constraints in enhancing the reliability and applicability of configuration
datasets [30–33]. Thus, a configuration ®𝑥 ∈ Scomp is considered valid if it satisfies all filtering rules, Scf.

To enhance uniqueness and reduce redundancy, we further refine the setScf by identifying and removing neighboring
configurations. A neighborhood N(®𝑥𝑖 ) for each configuration ®𝑥𝑖 in Scf is defined as the set of configurations within a
small Euclidean distance 𝜂. Configurations within this distance are considered redundant because they closely resemble
existing CVs in terms of their variable values. Such points are unlikely to provide novel insights or significantly enhance

Algorithm 1: Initial Refinement of Configuration Data
1 Function InitialRefinement(Sall, Sorig, 𝜂):
2 Scomp ← Sall \ Sorig ;
3 Scf ←

{
®𝑥 ∈ Scomp |

∧𝐾
𝑖=1 𝑓𝑖 ( ®𝑥 ) = 1

}
;

4 Scvd ← Scf ;
5 for each ®𝑥𝑖 ∈ Scf do
6 N( ®𝑥𝑖 ) ←

{
®𝑥 𝑗 ∈ Scf | ∥ ®𝑥𝑖 − ®𝑥 𝑗 ∥2 ≤ 𝜂

}
;

7 Scvd = Scf \
⋃|Scf |
𝑖=1 N( ®𝑥𝑖 ) ;

8 return Scvd ;
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the diversity of the configuration dataset. The choice of 𝜂 is based on the scale and nature of ®𝑥 , ensuring effective
differentiation between distinct configurations. After this step, the refined set of valid configurations is denoted as
Scvd. The detailed process of this refinement is outlined in Algorithm 1. This algorithm provides a structured approach
to deriving a comprehensive, relevant, and non-redundant configuration dataset from the initial set of all possible
configurations.

3.5 Iterative Clustering and Refinement

The iterative clustering and refinement process is crucial for ensuring that the configuration space is comprehensively
covered by representative configurations. This process aims to iteratively reduce redundancy and enhance the diversity
of the configuration dataset. The steps involved are as follows:

Step 1: Start with the set of complement valid configurations, Scvd, obtained after applying the filtering rules. This
set represents the initial candidate configurations for further refinement.

Step 2: Apply DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [34] to Scvd to identify
clusters. Density-based clustering methods [35], such as DBSCAN, are particularly suitable for our problem as they can
effectively identify dense regions in the configuration space that correspond to clusters of configurations with similar
performance characteristics such as CPU utilization, memory usage, response time, and throughput.

DBSCAN works well in high-dimensional spaces and can find clusters of arbitrary shapes, making it ideal for dealing
with complex and non-linear interactions among CVs. Unlike centroid-based methods such as K-means, DBSCAN does
not require the number of clusters to be specified in advance and handles noise effectively, providing robust and flexible
clustering results. Let the clusters be denoted as {C1, C2, . . . , C𝐾 }.

Step 3: For each cluster C𝑘 , compute the center 𝜇𝑘 as the mean of all configurations in the cluster, representing the
central configuration that summarizes the cluster.

Step 4: To ensure diversity and reduce redundancy, remove configurations within a specified 𝜀-distance from each
cluster center 𝜇𝑘 . This step refines Scvd by eliminating configurations that are too similar to the cluster centers,
maintaining a diverse set of candidates.

Step 5: Iteratively repeat the clustering, center calculation, and neighbor removal steps. After each iteration, check if
the number of configurations in Scvd has stabilized. Convergence is achieved when the number of valid configurations
remains consistent across consecutive iterations, indicating that further refinement does not significantly alter the
dataset.

Step 6: Continue the iterative process until convergence. This ensures that the final set of configurations is both
diverse and representative, comprehensively covering the configuration space without redundancy.

The iterative clustering and refinement process is formally described in Algorithm 2.

3.6 Selecting an Optimal Subset of Srefined
The final step in the ICSC methodology involves selecting an optimal subset from the refined set of configurations
Srefined. This subset should maintain the diversity and representativeness of the original refined set while minimiz-
ing redundancy and ensuring that the number of additional configurations remains optimal. To achieve this, we
define the optimization problem with a clear objective and constraints. The primary objective of the optimization
problem is to maximize the coverage of new combinations of CV pairs in the configuration space, thus filling gaps
not previously covered by the original dataset Sorig. The objective function can be expressed as maximizing the
sum of new CV value combinations introduced by each configuration in Srefined. Formally, this is represented as,
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Algorithm 2: Iterative Clustering and Refinement
1 Function IterCluster(Scvd, 𝜀, 𝛿):
2 Initialize Scurrent ← Scvd ;
3 Initialize converged← false ;
4 while not converged do
5 Apply DBSCAN to Scurrent to identify clusters {C1, C2, . . . , C𝐾 } ;
6 Initialize Snext ← Scurrent ;
7 for each cluster C𝑘 ∈ {C1, C2, . . . , C𝐾 } do
8 Compute cluster center 𝜇𝑘 = 1

|C𝑘 |
∑
𝑥 ∈C𝑘 𝑥 ;

9 Remove points within 𝜀-distance from 𝜇𝑘 in Snext ;
10 Snext ← Snext \ {𝑥 ∈ C𝑘 | ∥𝑥 − 𝜇𝑘 ∥2 ≤ 𝜀 }
11 if |Scurrent | − |Snext | ≤ 𝛿 then
12 Set converged← true ;
13 else
14 Set Scurrent ← Snext ;
15 Set Srefined ← Scurrent ;
16 return Srefined ;

Maximize
∑
®𝑥𝑘 ∈Srefined NewCombinations( ®𝑥𝑘 ), where NewCombinations( ®𝑥𝑘 ) denotes the number of new CV value

combinations introduced by configuration ®𝑥𝑘 . The optimization problem is subject to two main constraints. First, the
cardinality constraint ensures that the size of the selected subset Sopt does not exceed a predefined limit 𝐿, |Sopt | ≤ 𝐿.
Second, the diversity constraint requires that the configurations in Sopt introduce new combinations not present in
Sorig, C(Sopt) ∩ C(Sorig) = ∅.

The problem can be easily seen to be NP-hard via a reduction from the standard set-cover problem. Consequently,
we employ a heuristic algorithm to find a near-optimal solution within a reasonable time frame. The heuristic selection
process begins by initializing an empty subset Sopt and a set of existing combinations for each CV combination in the
original dataset Sorig. For each configuration ®𝑥𝑘 ∈ Srefined, we evaluate whether it introduces new combinations for
any configuration dimensions. Let C(®𝑥𝑘 ,𝐶𝑉𝑖 ,𝐶𝑉𝑗 ) represent the combination of CV values (𝐶𝑉𝑖 ,𝐶𝑉𝑗 ) for configuration
®𝑥𝑘 . A configuration ®𝑥𝑘 is considered valuable if it introduces at least one new combination, is_new( ®𝑥𝑘 ).

To implement the selection process, we use a greedy algorithm that iteratively selects configurations from Srefined
that introduce the most new combinations. For each selected configuration ®𝑥𝑘 , we update the subset Sopt ← Sopt∪{®𝑥𝑘 }
and the dictionary C(Sorig accordingly, C(Sorig (𝐶𝑉𝑖 ,𝐶𝑉𝑗 ) ← C(Sorig (𝐶𝑉𝑖 ,𝐶𝑉𝑗 ) ∪ {C(®𝑥𝑘 ,𝐶𝑉𝑖 ,𝐶𝑉𝑗 )}. The process
continues until no more configurations in Srefined can introduce new combinations or the predefined limit 𝐿 is reached.
The detailed steps of the algorithm are outlined in Algorithm 3.

Algorithm 3: Greedy Algorithm for Selecting Sopt
1 Function SelectOptimalSubset(Srefined , 𝐿):
2 Initialize Sopt ← ∅ ;
3 Initialize Coriginal ← C(Sorig ) based on dataset Sorig ;
4 while |Sopt | ≤ 𝐿 do
5 for each ®𝑥𝑘 ∈ Srefined \ Sopt do
6 Evaluate if ®𝑥𝑘 introduces new combinations: ;
7 is_new( ®𝑥𝑘 ) =

∨
(𝐶𝑉𝑖 ,𝐶𝑉𝑗 ) ∈CV

(
C( ®𝑥𝑘 ,𝐶𝑉𝑖 ,𝐶𝑉𝑗 ) ∉

8 C(Sorig,𝐶𝑉𝑖 ,𝐶𝑉𝑗 )
)

9 if is_new( ®𝑥𝑘 ) then
10 Add ®𝑥𝑘 to Sopt ;
11 Update Coriginal with new combinations from ®𝑥𝑘 ;
12 return Sopt
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3.7 DBSCAN Hyperparameters

DBSCAN relies on two key hyperparameters that must be set accurately to obtain the desired clustering results.

3.7.1 Maximum Distance Threshold (𝜀). The maximum distance threshold, denoted as 𝜀, defines the radius of the
hypersphere within which the points are considered neighbors. For a dataset with 𝑁 dimensions, a practical approach to
choosing 𝜀 is to ensure that it represents a significant but not overly broad neighborhood in the configuration space. To
standardize 𝜀 across different datasets, a dimensionless measure is employed by dividing 𝜀 by the number of dimensions
𝑁 , 𝜀dimensionless =

𝜀
𝑁
. This ensures 𝜀 is appropriately scaled with respect to the dimensionality, facilitating a balanced

clustering process. We then set 𝜀 = 0.3
√
𝑁 as a baseline value. This represents 30% of the maximum Euclidean distance

in the configuration space. For a dataset with 7 CVs, this gives 𝜀initial ≈ 0.8.

3.7.2 Minimum number of Points in a Cluster (MinPts). The minimum number of points within an 𝜀-neighborhood,
denoted as MinPts, is crucial for defining a dense region. The value of MinPts should be large enough to avoid detecting
stray points (or “noise") as clusters, but small enough to identify meaningful groups. To estimate a suitable MinPts, we
consider the total number of points 𝑃 in the configuration space, where 𝑃 =

∏𝑁
𝑖=1 |𝐹𝑖 | and |𝐹𝑖 | represents the number of

distinct values for the 𝑖-th feature across 𝑁 dimensions. The average density per dimension 𝑑 is 𝑃1/𝑁 , and the density
within the 𝜀-neighborhood is 𝑑𝜀 = (𝜀 · 𝑑)𝑁 . This provides an initial MinPts estimate, refined through practical testing
and silhouette scores. For example, with 𝑃 = 2592, 𝑁 = 7, and 𝜀 ≈ 0.8, 𝑑𝜀 ≈ 19, suggesting an initial MinPts of around
19. Practical experimentation and evaluation using silhouette scores refine this initial estimate.

3.7.3 Silhouette Score for Finding Optimal 𝜀 and MinPts. The silhouette score [36] evaluates the clustering quality by
measuring how similar a point is to its own cluster (cohesion) versus other clusters (separation). For a point 𝑖 in cluster
𝐴, it is defined as 𝑠 (𝑖) = 𝑏 (𝑖 )−𝑎 (𝑖 )

max(𝑎 (𝑖 ),𝑏 (𝑖 ) ) , where 𝑎(𝑖) is the average distance from 𝑖 to other points in 𝐴, and 𝑏 (𝑖) is the
minimum average distance from 𝑖 to any other cluster 𝐵. The score ranges from −1 to 1, with higher values indicating
better clustering. The average score across all points reflects overall clustering quality.

To find the optimal values for 𝜀 and MinPts, we perform a grid search over a range of values for these parameters.
The grid search evaluates the silhouette score for each combination of 𝜀 and MinPts values to determine the pair that
maximizes the overall silhouette score by evaluating argmax𝜀,MinPts

1
𝑁

∑𝑁
𝑖=1 𝑠 (𝑖) where 𝑁 is the total number of points.

Given an initial estimate for 𝜀 and MinPts, we define their ranges as 𝜀 ∈ [𝜀initial ± Δ𝜀] and MinPts ∈ [MinPtsinitial ±
ΔMinPts], where Δ𝜀 and ΔMinPts are the step sizes for the grid search. To explore a reasonable range around 𝜀initial,
we define 𝜀 ∈ [0.6 · 𝜀initial, 1.4 · 𝜀initial]. For 𝜀initial ≈ 0.8, this gives 𝜀 ≈ [0.48, 1.12]. This range is chosen to balance
sensitivity and robustness in the clustering process, ensuring that 𝜀 values are neither too small to miss significant
clusters nor too large to merge distinct clusters.

In addition, to explore a practical range around MinPtsinitial, we can define MinPts ∈ [10, 30]. This range is chosen
based on empirical observations of typical point densities in configuration spaces, ensuring that clusters are meaningful
and dense enough to be statistically significant while avoiding the inclusion of noise. For each pair (𝜀,MinPts) in these
ranges, we calculate the silhouette score as follows: (1) perform clustering with the given 𝜀 and MinPts; (2) calculate
the average silhouette score for the resulting clusters; (3) identify the pair (𝜀,MinPts) that yields the highest average
silhouette score; (4) stop the iteration when the silhouette score does not improve significantly over several iterations.
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Table 1. Datasets: configuration variables and output.

Dataset Domain Configuration Variables (CVs) ®𝑥 Output (Label 𝑦)
ES [37] Cloud Storage CPU Cores, Disk IO Rate, Cache, Metadata Size, No. of Files, File Size Performance
GB [38] CPU Benchmarking Clock Speed, L2, L3, Memory, Proc. Cap., Num. of Threads Throughput
BB [39] Virtual Machines CPU Cores, Core Speed, Memory, Network (Rx/Tx), Disk R/W CPU Usage (%)

4 EXPERIMENTAL EVALUATION

4.1 Dataset Overview: A Closer Look at the Data

We applied ICSC to the datasets listed in Table 1 and described below. A complete list of acronyms used in this paper is
provided in Table 2.

Table 2. Table of Acronyms.

Term Full Form Term Full Form
ES Edge Storage Dataset GB Geekbench Dataset
BB BitBrains Dataset CVs Configuration Variables
KDE Kernel Density Estimate MSE Mean Squared Error
RF Random Forest SSL Semi-Supervised Learning

Cloud/Edge Storage Dataset (ES): Cloud or Edge Storage (ES)2 enables fast local storage access at an edge node by
caching a portion of remote cloud storage. This approach optimizes limited local compute and storage resources for
improved performance [37, 40]. ES systems involve numerous hardware and software configuration parameters that
must be carefully set to avoid IO timeouts and high latencies caused by fluctuating data transfer rates to the cloud. The
dataset includes performance metrics for 991 configurations.

Geekbench Dataset (GB): Geekbench dataset3 contains benchmarking results focused on CPU performance under
various workloads. Collected using the Geekbench 3 suite, a tool widely used by consumers and researchers, the dataset
measures performance across different microarchitectures, considering factors like frequency, core count, cache size,
and memory bandwidth [38]. It includes results for hundreds of Intel CPUs, providing insights into how different
specifications impact single-core and multi-core performance across diverse computational tasks.

BitBrains Dataset (BB): BitBrains dataset4 contains performance logs from 1,750 virtual machines (VMs) in
BitBrains’s data center, which offers various cloud services. This dataset is a 5-month time series analyzed at Delft
University of Technology [39]. Iosup et al.[39] details the characterization of both requested and used resources,
including CPU, memory, disk, and network data, along with the initial VM configurations.

We have explored many publicly available datasets, but unfortunately, almost all are in the form of time-series data
rather than performance as an explicit function of different configurations. Only the ES dataset does the latter; the
others (GB & BB), although adequate to illustrate the methodology, are not true configuration datasets.

4.2 Experimental Setup

To evaluate the effectiveness of the ICSC methodology, we conducted experiments on three distinct datasets: ES, GB, and
BB. Our approach aimed to assess how well the method enhances prediction accuracy and configuration optimization
2[ES] https://github.com/AnonUser-sudo-sys/ES-dataset
3[GB] https://github.com/Emma926/cpu_selection
4[BB] http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains (RND500)
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Table 3. Comparison of MSE and R2 Across Models.

Dataset Method MSE R2

ES

Gradient Boosting 9.52 0.86
Random Forest 1.04 0.97

Bayesian 2.86 0.76
Kriging 19.10 0.60

GB

Gradient Boosting 9.20 0.72
Random Forest 7.22 0.76
Bayesian Ridge 8.73 0.68

Kriging 12.63 0.50

BB

Gradient Boosting 7.56 0.91
Random Forest 11.34 0.36

Bayesian 7.61 0.79
Kriging 15.03 0.20

by filling the gaps in the original configuration space more comprehensively. For each dataset, we began by splitting
the data into training and test sets using a standard 5-fold cross-validation method, reserving approximately 20% of the
labeled data for testing while using the remaining 80% for training. We extracted the relevant CVs as features (®𝑥) and
the performance metrics as the target variable (𝑦) from each dataset. For instance, in the ES dataset, CVs included CPU
cores, disk IO rate, cache, metadata size, no. of files, and file size while the label 𝑦 was performance. The features (®𝑥)
were standardized using a StandardScaler to ensure uniform scaling across all CVs.

To augment the space coverage, we generated additional data points using the ICSC methodology, which strategically
filled the gaps in the configuration space. For comparison, we also generated random data points (RAND) within
the feature ranges of the original data. The labels 𝑦 for these CVs, both randomly and intelligently generated, were
predicted using a model trained on the Baseline. Additionally, we included a comparison using a greedy algorithm
(GREED) designed to select new data points by iteratively identifying the largest uncovered gaps in the configuration
space. For a fair comparison, we ensure that the number of additional data points added by RAND and GREED is
equal to the number of additional points selected by ICSC. This ensures that performance improvements are solely
due to the selection strategy rather than the quantity of additional data. In this approach, for each dimension of the
configuration space, we calculate the gaps between consecutive points and select the midpoint of the largest gap. This
greedy algorithm, which adds one point at a time, ensures that new data points are strategically placed in regions with
minimal coverage. The reason to consider such an approach is that it is very intuitive and may be used in the absence
of a well-designed intelligent mechanism explored here.

4.3 Performance Prediction Model

Given the complexity of the dependence of performance on the configuration and workload parameters, a simple
analytic model is typically inadequate; instead, it is necessary to explore machine learning models. It is well known that
no single machine learning model is optimal in all cases; therefore, we evaluated over 15 different supervised learning
models, including Linear Regression [41], Random Forest (RF) [42], and Gradient Boosting [43]. The selection of the
final model for each dataset was based on its performance in terms of MSE and R2 score during cross-validation. Table 3
illustrates the results for four key models (out of 15) that we tried for all three datasets. It is seen that Random Forest
(RF) works the best for ES and GB datasets, whereas Gradient Boosting works the best for BB. Kriging and Bayesian
optimization did not generally perform well for any of the datasets.
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(a) Supervised Learning on ES (b) Supervised Learning on GB (c) Supervised Learning on BB

(d) SSL on ES (e) SSL on GB (f) SSL on BB

Fig. 2. Supervised Learning and SSL Model Performance on Different Datasets.

4.4 Influence of ICSC on Performance Prediction

In this section, we explore how the performance prediction is influenced by the selection of 𝑥𝑖 ’s for additional data used
in the model. In all cases, the corresponding 𝑦𝑖 ’s are obtained from the best performing model trained on the original
dataset. In particular, we compare the performance of ICSC against the RAND and GREED mechanisms for selecting
𝑥𝑖 ’s. We also show the performance of the Baseline model trained only on the original data.

The results are shown in Fig. 2a for the ES dataset. In each plot, the left y-axis shows the MSE using green bars,
where lower values are better. The right y-axis shows the R2 score using orange bars indicating the R2 score, where
higher values are better. It is seen that the model trained on ICSC achieves the best performance, with an MSE of 0.90
and R2 of 0.95. This corresponds to a 69.4% improvement in MSE and a 58.3% improvement in R2 compared to the
Baseline. In comparison, RAND achieves an MSE of 1.54 (47.6% improvement) and R2 of 0.64 (6.7% improvement), while
GREED achieves an MSE of 1.11 (62.2% improvement) and R2 of 0.76 (26.7% improvement). However, neither method
matches the performance of ICSC. These results demonstrate that ICSC significantly outperforms both RAND and
GREED methods by effectively targeting the most informative gaps in the configuration space.

Another way to examine the benefit of ICSC in choosing 𝑥𝑖 ’s to examine its influence on the accuracy of performance
prediction using SSLmodels. Suchmodels do not require the effort of conducting experiments to obtain the corresponding
𝑦𝑖 ’s; however, the number of artificial data points added and how they are generated is still crucial. It is shown, for
example, in [21] that adding too many artificial data points can hurt the accuracy. It is also shown in [21] that the
self-training-based SSL is not only simple and intuitive but also generally performs the best. Therefore, we use that in
this paper.

Fig. 2d shows the SSL performance on the ES dataset. It is seen that ICSC again delivers superior performance. It
achieves an MSE of 1.04 and R2 of 0.97, representing a 64.6% and 61.7% improvement over the Baseline, respectively.
It may be noted that randomly generated data can occasionally achieve better MSE than GREED, as for example, is
the case here. This is because its broader and unstructured exploration of the space can occasionally result in a more
diverse and representative configuration set, enhancing model generalization.
Manuscript submitted to ACM
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(a) ES Configuration Space with Original Data Points. (b) ES Configuration Space with Filled Gaps.

Fig. 3. Comparison of ES Configuration Space Before and After Applying ICSC.

For the GB dataset (Fig. 2b), the differences between the methods become more apparent. The model trained on the
Baseline results in an MSE of 12.29 and an R2 score of 0.14. RAND results in an MSE of 11.90 (3.2% improvement) and
R2 of 0.34 (142.86% improvement), while GREED shows modest improvement with an MSE of 11.99 (2.5% improvement)
and R2 of 0.43 (207.2% improvement). In contrast, ICSC achieves an MSE of 7.96 and R2 of 0.66—a 35.2% reduction in
MSE and a 371.4% improvement in R2 compared to the Baseline. Similar trends are observed for the SSL models (Fig. 2e),
where ICSC achieves the lowest MSE of 7.22 (41.2% improvement) and the highest R2 of 0.70 (400% improvement),
outperforming both RAND and GREED approaches. Table 3 further confirms RF as the best-performing model for the
GB dataset.

Finally, for the BB dataset (Fig.2c), the superiority of ICSC is evident. The Gradient Boosting model trained on the
Baseline achieves an MSE of 12.63 and an R2 score of 0.20. However, training on ICSC results in the lowest MSE of
7.64 (39.5% improvement) and the highest R2 score of 0.89 (345% improvement), achieved by adding 1.4% of the valid
complement data. RAND achieves an MSE of 11.77 (6.8% improvement) and R2 of 0.26 (30% improvement), while GREED
shows an MSE of 11.94 (5.5% improvement) and R2 of 0.55 (175% improvement). The SSL models follow the same pattern
(Fig.2f), where ICSC achieves an MSE of 7.56 (40.2% improvement) and R2 of 0.91 (355% improvement), outperforming
all other methods. As highlighted in Table 3, Gradient Boosting was identified as the optimal model for the BB dataset.

4.5 Quality of Coverage by ICSC

In this section, we present results on how the ICSC mechanism helps to cover the configuration space. We show this
both via a series of visualization plots for different datasets and by evaluation of a coverage metric.

Fig. 3a provides a comprehensive visualization of the CV relationships within the dataset. Each subplot in the pair
plots represents a unique combination of two CVs, allowing for a detailed examination of their interactions. The diagonal
subplots display kernel density estimates (KDE) for each CV, highlighting the distribution patterns within the data.
The off-diagonal subplots depict the pairwise relationships through scatter plots, with each point corresponding to an
individual data entry. We focused on pairwise combinations of CVs to maintain clarity and readability, as including
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(a) GB Configuration Space with Original Data Points. (b) GB Configuration Space with Filled Gaps.

Fig. 4. Comparison of GB Configuration Space Before and After Applying ICSC.

(a) BB Configuration Space with Original Data Points. (b) BB Configuration Space with Filled Gaps.

Fig. 5. Comparison of BB Configuration Space Before and After Applying ICSC.

higher-order combinations would result in overly complex visualizations, making it difficult to identify meaningful
patterns within the data.

Fig. 3a illustrates the original ES configuration space, where distinct regions are evident, but there are also noticeable
gaps. These gaps indicate unexplored areas that limit the dataset’s ability to fully capture the relationships between
CVs. In contrast, Fig. 3b shows the configuration space after these gaps have been filled with intelligently generated
data points. This additional data enhances the dataset’s coverage by 11%, leading to a more complete and robust
representation of the configuration space.

Fig. 4a and Fig. 4b illustrate the GB dataset’s configuration space before and after applying the ICSC methodology.
Fig. 4a shows significant gaps in the original data points, with only 48% coverage. In contrast, Fig. 4b demonstrates how
Manuscript submitted to ACM
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Table 4. Coverage Metrics: Original vs. Combined Data.

Dataset |Sorig | |Sopt | 𝑅𝑆% | Corig | | Ccomb | | Call |
ES 58 10 0.4 106 118 118
GB 121 72 0.78 191 340 393
BB 380 23 1.4 193 226 226

intelligently generated data points fill these gaps, achieving 86% coverage. Fig. 5a and Fig. 5b illustrate the configuration
space of the BB dataset before and after applying ICSC. The original data, shown in Fig. 5a, has significant gaps, with
only 48% coverage. After applying ICSC, Fig. 5b shows these gaps filled, achieving 100% coverage.

Table 4 shows the number of data points added to each dataset and the resulting increase in coverage. Here (|Sorig |)
is the number of points in the original dataset and (|Sopt |) the number of data points added. Notably, only a relatively
small number of new data points were added, achieving the desired outcome. The column (𝑅𝑆%) expresses these as
a percentage of the total number of valid uncovered configurations, or |Scvd |. The table also shows the number of
unique CV combinations in the original dataset (|Corig |) and after adding the new data points (|Ccomb |) datasets. The
last column expresses the total possible combinations (|Call |). Fig. 6 shows the original coverage (OC) and coverage of
the combined dataset (CC) pictorially. It is seen that the coverage increased substantially in all cases, becoming 100%
for ES and BB.

Fig. 6. Comparison of Original Coverage (OC) and Combined Coverage (CC) of Different Datasets.

5 CONCLUSIONS

In this paper, we introduced the ICSC methodology to select additional data points (or 𝑥 values) from the configuration
space to augment the existing data points. The purpose of this is to identify a small set of strategically chosen
configurations for which additional experimentation needs to be done to maximize the coverage of the configuration
space and thereby enhance the accuracy of the predictions made by machine learning models trained on the data.

Experimental evaluations show that ICSC significantly enhances model performance across multiple datasets, even
with a small number of additional data points for which measurements need to be done. We also show that a prediction
model trained on ICSC-augmented data exhibits significantly lower MSE and higher R2 scores. For example, in the GB
dataset, the random forest model improved prediction accuracy by 35.2%, achieving an MSE of 7.96 and an R2 of 0.66.
The methodology is also useful in the context of semi-supervised learning (SSL), where a careful selection of 𝑥 values
reduces the MSE to 7.22 and increases the R2 score to 0.70. Compared to the Baseline, RAND, and GREED models, ICSC
shows an MSE reduction of 41.2%, 32.2%, and 33.6%, respectively, and an R2 improvement of 400%, 105.9%, and 62.8%,
respectively.
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