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Abstract—In this paper, we explore the integrated structure of
the intrabody networks, which consist of multiple sensors, a few
data aggregators, and decision-makers called the hubs, an On-
Body Node (OBN) with more complex capabilities and display
features, along with an alternate energy source or backup node
in form of a stomach patch. The nodes within the network employ
magnetic resonance communication (MRC) technology, which was
selected for its favorable propagation properties within biological
tissues. Given the limitations of incorporating traditional batteries
in implanted devices, these nodes rely on energy harvesting
from an external, removable, and rechargeable On-Body Node
(OBN), such as a smartwatch. This paper discusses the network
architecture that facilitates the degraded mode operation of the
network to cope with low battery status and the removal of OBN
for charging for longer hours. As we compare a few policies for
energy saving mode, we show that proper management of OBN
removal can allow for long periods of operation with a small
backup node.

Index Terms—Intra-body networks, Magnetic Resonance Com-
munications, Kalman Filtering, Data aggregation.

I. INTRODUCTION

Chronic diseases are becoming increasingly prevalent world-
wide, driven by several factors including an aging population
in developed nations and escalating levels of pollution—air,
water, and food—in developing countries [T]], [2]]. In the United
States, nearly 45% of the population, equating to approximately
133 million people, live with at least one chronic illness [,
and this figure is continually rising. Among U.S. adults, 25%
have two or more chronic conditions, while over 50% of older
adults (aged 65 and above) are managing three or more chronic
conditions [4]. Chronic diseases remain the primary cause of
mortality and long-term disability in the country [5]].

Recent advancements in medical devices have opened new
possibilities for continuous monitoring and automated diagnosis
in chronic disease management [, [[7]. In this paper, we
explore the structure and features of such networks, which we
refer to as Chronic Disease Management Networks (CDMN). A
key challenge in these networks is the need for a reliable energy
supply and efficient energy use, as batteries are impractical for
deeply implanted devices due to their large size as compared
with the rest of the electronics and the invasive procedures
required for replacement. Thus, integrating energy harvesting
mechanisms alongside communication systems becomes cru-
cial. The energy can be harvested internally from dynamic
organs like the heart or lungs [§]l, [9] or can be externally
provided by an on-body node (OBN) which we assume to

be a smart-watch like device with an antenna to enable both
energy transfer and communication with CDMN. However, the
focus of this paper is on communications rather than energy
distribution per se, which is explored in [I0]. However, energy
is the most precious resource for CDMN and must dominate
all communications related considerations including the media
access control (MAC) mechanisms, low-power transition of
nodes, and dealing with low-energy scenarios, The paper makes
the following key contributions:

1) We devise simple mechanisms to avoid interference be-
tween communication, allow configuration of network pa-
rameters, support emergency communications, and avoid
unnecessary communications via signal prediction.

2) We develop mechanisms to cope with low-energy sce-
narios, including maximization of operations during these
periods, and managing transitions back and forth between
different operational modes.

3) We allow for OBN to be removed for charging regularly
(e.g., once a day) while still allowing for network contin-
uation and external alerting via a backup node with very
long inter-charging time (e.g., a year or more).

4) We evaluate the mechanisms comprehensively via detailed
simulations with parameterization covering the charac-
teristics of the body media, energy transfer overheads,
communication/computing energy expenditure, etc. We
use both centralized and distributed energy transfer mech-
anisms discussed in in this evaluation.

We show that a 7-node CDMN consisting of 5 sensor nodes
and 2 hub nodes can sustain up to 20 hrs/day on energy supplied
by a smartwatch like OBN. We also show that if the user forgets
to put back the OBN for an entire additional day no more than
once a month, the backup can last for a year without risking
any shutdown of the operations. KK:***Modify this based on
the results.

II. CHRONIC DISEASE MANAGEMENT NETWORKS
A. Architecture of CDMN

The CDMN can be structured in multiple ways, subject to
the constraint of collecting the required signals where they
can be tapped inside the body. The sensors are often clustered
around the diseased or a crucial body part; thus, we envision
CDMN structured as shown in Fig. m i.e., a set of “hub”
nodes each interacting with nearby sensors/actuators. Only
the hubs interact with the OBN directly. The OBN serves



three primary functions: (a) receiving data from the intrabody
network for processing, alerting, and display, (b) transmitting
energy to the intrabody nodes as needed, and (c) managing,
configuring, and controlling the entire network. The OBN may
also interact with external devices through regular networking
(e.g., WiFi or BLE), but we do not consider that aspect here.
The primary role of a hub is to collect data from its sensor
nodes and perform the required data concentration, aggregation,
filtering, and processing before sending the results to the OBN.
The hub may also manage the configuration of its sensors
and control actuation (e.g., drug/electric stimulation delivery).
The individual sensor nodes are tasked with receiving energy,
gathering data, and transmitting it bacl t~ the hih
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The OBN and backup are assumed to be equipped with
a specialized antenna that maintains contact with the skin
to enable through-the-body wireless communications (TBWC)
and energy transfer. Other CDMN nodes also use TBWC.
This requires a suitable Human Body Communications (HBC)
technology with very low power, a small antenna, and efficient
transmission in the body. We discuss this next.

Fig. 1: CDMN illustration

B. Communications and Energy Transfer Through the Body

It is well known RF is not suitable for HBC [11]], [[12], but
many other technologies have been studied in the literature [|13]],
[14]. Here we focus on Magnetic Resonance Communication
(MRC) since it has been demonstrated that it is very well suited
for CDMN [[15]], [[16]]. MRC uses a resonant pair of transmitter
and receiver, each of which has a coil in parallel with a
capacitor thereby forming an LC circuit. Such a circuit has a
natural resonance frequency given by 1/(27+/LC), tradition-
ally chosen to be 13.56 MHz (RFID frequency), although it was
previously discovered that the optimal frequency for intrabody
use is around 25-30MHz [17]]. The low frequency results in
nonradiative energy transfer, primarily through magnetic induc-
tion between the two coils. A precise matching of the resonance
frequency and impedance on the transmit and receive side
results in efficient energy transfer, but the maximum efficiency
is limited to 50%. The impedance determines the magnitude
of the resonance peak or gain — a higher gain is better but
may be more easily perturbed due to various factors including
the (human body) channel characteristics, which are affected

by physiological parameters. Ref [18]] explores an autotuning
mechanism to maintain a high gain regardless of perturbations
which can be used here.

We have evaluated MRC in an on-body configuration, where
both the transmit and receive coils were flat, applied directly to
the skin using conductive gel and shielded to minimize through-
the-air communication interference. For intrabody applications,
MRC coils could adopt alternative geometries but would need
to remain small (approximately 1 cm or less in diameter)
and enclosed within a biocompatible casing. The details are
contained in our energy delivery paper®’. Attenuation levels
for MRC transmission within the body were observed to range
between 15 to 23 dB over body-length distances, indicating
the feasibility of this technique for intrabody networks. More-
over, the technology exhibited resilience to typical variations
expected in both on-body and intrabody environments, in-
cluding movement, posture changes, clothing differences, and
individual physical variations such as body build and weight.
Incidentally, simulations using phantom body models show that
on-body results closely align with intrabody performance [15]-
[17].

C. Coordinating Communications

The most basic issue in any wireless network is the coordi-
nation of communications to avoid interference when multiple
nodes try to send data to any given node (e.g., from multiple
sensors to its hub). In fact, unlike in-the-air networks, commu-
nication from any node in the body could potentially be heard
by every other node. Furthermore, typically most nodes send a
tiny amount of data (e.g., a few bytes to a few tens of bytes)
periodically, and the periods tend to be rather large (10°s of
seconds or more). Given this, a small network, and the need
for extreme energy efficiency, we opt for a simple scheduled
MAC coordination mechanism, where every node has a set
slot to send the data, although the schedule can be changed
occasionally as needed through the configuration capability that
we consider as an inherent part of the network. An important
aspect of a fully scheduled MAC is that the data receiver knows
when the data may be transmitted, and it can stay in a low-
power mode at all other times.

Fig.[2] shows a sample network with two hubs as a hierarchy.
We classify the communications as Keep-Alive (KA) commu-
nication and Regular Communication (RC). The RCs concern
normal data/energy transfers as required by the application.
The KACs have a predefined duration, henceforth called KA
duration and denoted as AKA,
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Fig. 2: Diagram of Network Architecture

KK:#***Even at full column, the font is so tiny, even though
so much space is being wasted on lines and boxes There are
two reasons to use KACs. First, they limit the gap between
RCs; such a gap may occur either because the node is faulty
or because the signal has not changed much, and sending it out
is not considered essential (more on this later). Second, they can
convey configuration information (as needed) to optimize op-
erational and energy efficiency. In both cases, the KA message
conveys the regular data as well (if any). For example, a sensor
would typically sense a new value periodically (with duration
ARC that is a submultiple of AX4, If no RC happens for AK4
duration, the KAC will contain the last sensed value regardless
of whether it also conveys configuration information. Because
of the asymmetric nature of CDMN, the “keep-alive” aspect of
KACs is relevant only in the “up” direction, i.e., from sensor
to hub, and hub to OBN, since this is the direction that the data
normally travels. For the same reason, the configuration-related
KACs go only in the “down” direction, i.e. from OBN to hub,
and hub to sensors.

D. Summary of Energy Transfer Techniques

Even though CDMN involves integrate energy transfer and
communications, this paper does not focus on energy transfer
strategies, which are covered in a different paper [10]]. However,
for completeness, we mention the strategies here briefly. The
energy transfer happens only from OBN, and given a wireless
media, some energy will reach every node of CDMN. However,
as shown in []E[], allowing all the nodes to partake the sent
energy is not a good idea since the energy available to any given
node goes down as more nodes try to receive it. Accordingly
we devised two basic energy transfer mechanisms in [I0]:
Centralized and Distributed. In the centralized scheme, the
OBN decide who should harvest in the next round based on the
energy levels and needs of each node, which is communicated
to the OBN as a part of KACs. Again, it turns out that allowing
everyone who is low on energy to harvest is not a good idea,
and instead we set a fixed number K (a hyperparameter of
the algorithm). In distributed scheme, each node decides on its
own whether to partake the energy based on some thresholds.
It turns out that the centralized scheme keeps the nodes better
stocked, but only certain values of /K work properly. In contrast

the distributed scheme is much more robust. We also explore
a hybrid scheme in [[10] which attempts to enhance both
robustness and energy level.

We next discuss a few issues when energy transfer and
communications are integrated. There is no conflict between
the two: the energy transfer occurs at the resonance frequency
(around 25MHz) whereas it suffices to keep the communication
occur at a much lower rate (e.g., 250KHz) without introducing
too much signal delays. However, there is one subtle issue with
integration: a receiver needs to be connected both for energy
and signal reception. This means that a receiver who connects
to receive only the data will also receive energy during periods
of simultaneous transfer. However, this should not have any
significant impact since the communication durations are much
smaller than energy reception durations.

E. Reducing Communication Energy Expense

Basic communication involves many operations such as
packet forming, modulation/demodulation, packet framing, A/D
and D/A conversion, signal amplification, error checking, etc.
Higher communication layers add to this, and so does wireless
transmission, which may result in 20dB or more attenuation.
This makes wireless communication quite expensive as com-
pared to computation, especially if the latter is implemented
through an ASIC or FPGA. Although the communication
energy has been reported for many specific instances (e.g., for
RF-based body area networks in ), it depends on numerous
factors, including significantly on how effectively the protocol
and the nodes can make use of low power modes and the packet
sizes. With very small packets, as we expect in the CDMN
context, the per-byte energy cost of communication can be quite
high, which means batching data can provide a useful energy
vs. delay tradeoff.

There are many well-known and practiced ways of reduc-
ing communication energy, including (a) Continuous signal
value prediction using Kalman filter or other means to reduce
transmission rate, which provides a tradeoff between signal
reconstruction accuracy and energy, (b) Accumulating data
before transmission, which provides a tradeoff between delay
(latency) and energy, (c) Signal filtering (e.g., subsampling,
averaging, thresholding, etc.) that provides a tradeoff between
signal fidelity and energy. We shall make use of all these
techniques and evaluate the tradeoffs.

The physiological signals may show a variety of behaviors
over time, including stable periods, drifts to higher or lower
baselines (due to chronic illness, aging, lifestyle factors, etc.),
and rapid changes that may last many minutes or longer
before returning to normal. It is important to maintain a target
accuracy across these different periods. We propose a closed
loop control to provide such a capability which can be wrapped
around the signal prediction mechanism (at the receiver side)
to dynamically adjust signal subsampling or batching on the
sender side.

The signal prediction mechanism could range from simple
statistical methods to elaborate machine learning techniques,



but only the former is suitable for the hubs. The popular
ARIMA (autoregressive integrated moving average) model
predicts the next value (or their differences) based on prior
values and errors. ARIMA predictions assume stationarity in
the samples and do not deal well with missing samples.

In contrast, the popular Kalman filter builds a model of
the hidden state of the underlying process, and uses it along
with a noise model to predict the measured values. It (a)
predicts the (hidden) state at the next time instant based on
the assumed system dynamics, and (b) updates the state based
on the new measurement received. The Kalman filter does not
require stationarity or time-invariance of the parameters and
can easily handle missing values by skipping updates. In [20]]
we have studied such a mechanism in detail which provides
an adaptive closed-loop control over the transmission. The data
sender defines a threshold e € [0, 1] as a tolerance such that the
prepared sample (individual or batch) will be transmitted only
if the fractional difference between it and the previous value
exceeds €. The receiver continues predicting next sample until
it receives one when it computes the error estimate which is
checked against some error threshold «. If the error exceeds x,
the receiver estimates a new value of the threshold € and sends
it as feedback to the data sender. The goal is to make € as
large as possible (to reduce communications) and yet keep the
signal reconstruction error at the hub within specified bounds.
It is shown in [20] that the mechanism can significantly reduce
the number of communications and we shall employ it for every
periodic signal transfer.

III. ENERGY EFFICIENT COMMUNICATIONS IN CDMN

A. Time-Slot Allocations

We consider a common global clock tick for all the nodes for
communication scheduling. We consider 4 as the tick duration,
which represents the sampling rate of the fastest signal inside
the body (usually 100ms or more). We will define longer time
slots as integer multiples of 4. In particular, AR (j) = k¢ is
the minimum duration for regular communications for node j,
where £ is an integer. Similarly, AKA4(j) = kKA x ARC(j)
is the duration for sending the keep-alive message by node j,
where kJK 4 is also an integer, typically the same for all nodes
under a hub.

In the CDMN environment, all communications are expected
to be rather short. In particular, a single sample from even a
sensor that can sense multiple parameters will likely be ~10
bytes, and batching them will result in at most a few hundred
bytes. At ~25 MHz resonance frequency, MRC can easily
support 1 Mb/sec with simple BPSK modulation, and thus the
total packet forming and transmission time can be kept under 1
ms, which would be much smaller than §. The sample collection
itself could be quite slow (e.g., blood glucose measurement) but
this does not matter for transmission scheduling. We assume
for convenience that an entire ¢ slot is used for communication.
Given the rather small size of the network, most delta slots will
remain unoccupied and can be used for sporadic or emergency

communications. Fig. ?? shows the size difference of different
time slots.

B. CDMN Application Types

The CDMN discussed here may be used to support a wide
variety of intra-network applications, that differ not only in
terms of network size/configuration (e.g., the number of hubs
& sensors connected to them) but also in terms of how data
is collected, transmitted, and processed. Because people in-
creasingly suffering from multiple chronic diseases, the CDMN
will likely support multiple applications simultaneously, each
using a subset of nodes, with some sensors and hubs involved
in multiple applications. If a sensor supplies the same data
to the same hub for two different applications, the more
stringent requirements will prevail. In addition to therapeutic
applications, one could also define some “utility” applications
that periodically collect and display statistics regarding both the
data and health/configuration for all the nodes. In the following,
we consider some important variations.

The data transmission needs of various applications can vary
substantially but can be divided into two broad classes. In a
streaming application (SA), the hub generates another time-
series by processing the incoming streams from its sensors
and sending it to the OBN. Since various sensors may have
different time-periods, the hub may need a batch of data from
each of its sensors before processing and sending the output
to the OBN. In a non-streaming application (NA), the hub
only sends sporadic alerts or statuses to the OBN. For both
application types, the hub would use a Kalman filter to reduce
the transmissions from the sensors, but a Kalman filter at the
OBN is sensible only for SAs.

By default, a sensor sends one value per sensing period and
a classical Kalman Filter is adequate to handle it. However,
given the very small size of the transmissions, it is more
efficient for a sensor to accumulate a batch of sensed values
and then send to the hub. In this case, we need to extend
the Kalman filter to vector data, Such clustered transmission
(CT) essentially trades off energy for latency, which may be
acceptable for fast signals. In CT, the sensor retains the previous
data vector v(P"¢?) as well. When the current vector v(¢*"") is
complete, it computes the RMS value of the difference, i.e.,

K (curr) (prev)\2 . .
VIS, (v —v, ~’)?/K) and compares it against the
threshold to decide if v(°*"") should be transmitted. In case
of transmission, we let v(Pr¢?) = ¢(cur™) On the hub side,
the Kalman filter now needs to predict the entire vector, and
when the next vector is received, it uses the RMS value of
the difference between the predicted and received vectors to
estimate the error. We will study the Kalman filter performance
as a function of the batch-size for CT.

IV. EXPERIMENTAL DESIGN

For our evaluation, we use a three-hub network, where Hub
1 manages sensors 1-2 and Hub 2 manages sensors 3-5, with a
backup node integrated to ensure redundancy and operational



continuity. The third Hub Node is considered the central hub
node, which establishes communications with both the hub
nodes as well as the backup energy node. The central-hub
node acts as an intermediary between the hubs and the backup
energy node in the absence of the OBN. This design was se-
lected for its ability to balance communication efficiency, load
distribution, and error tolerance while maintaining manageable
system complexity. The central-hub receives data and energy
levels from the hubs when the OBN is removed from the
network for some time. Then the central-hub communicates
with the backup energy node by sending a wake-up call to the
backup energy node. The Backup wakes up and, based on the
central-hub’s decision, it employs one of the energy transfer
strategies - Centralized, Decentralized, and Hybrid, to provide
energy to the nodes that are in the low energy mode, and
performs energy transmission to them. However, the backup
energy node can only achieve that twice before returning to
the sleep mode again. Therefore, the current central-hub model
offers an optimal trade-off, balancing efficient data flow, fault
resilience, and reliability for the intended application.

The simulation environment is created using Python. The
characteristics of the transmission media (i.e., the human
body) were obtained by conducting real on-body experiments.
The energy consumption was estimated by using data sheets
of available products where possible (e.g., supercapacitors,
microcontrollers) and by analyzing the approximate number
of instructions to perform various operations. We assume six
sensors strategically placed on various parts of the human body,
tasked with monitoring key physiological parameters and driven
by data traces as described below.

A. Pre-processing of Datasets Used

HK: We also talked about the data here
Table |I| shows the notations used in the paper.

TABLE I: Notation

Variable | Definition
4 Basic slot (unit of time discretization)

As(j) Sampling and Filtering period of component j (an
integer multiple of A)
ARC ()| Regular Communication (RC) Communication pe-

riod of component j
AK A( j)| Keep Alive (KA) Communication period of compo-
nent j (an integer multiple of ARC (5 ))

kf Ratio of AS(j) to &

kJC Batch size (Ratio of ARC (5) to AS(45))
ki Ratio of AKA(5) to AEC(5)

N Total number of nodes

€ Data Threshold

B. Network Scheduling

Following the preparation of the datasets through appropri-
ate subsampling and configuration for signal transmission to
the hub nodes, the focus shifted to network scheduling. A
structured scheduling mechanism was implemented to allocate
dedicated transmission slots for each node, ensuring conflict-
free communication across the network. To achieve this, the

Greedy Perturbation Algorithm was employed, which en-
sures periodic, non-overlapping transmissions among network
nodes. The algorithm calculates the Least Common Multiple
(LCM) of the nodes’ operational periods to define a unified
scheduling frame, facilitating synchronized periodic data ex-
change. Transmission times are derived based on the individual
periods of each node and constrained within a predefined
time window. Potential conflicts between node transmissions
are iteratively resolved through a greedy strategy, applying
incremental shifts of 100 milliseconds to overlapping slots
until all conflicts are eliminated. These adjustments are tracked
to maintain conflict-free scheduling across all nodes while
preserving the periodicity of data transmission.

TABLE II: Scheduling for Sensor Nodes

Nodes Sampling Reg. comm. Keep-alive
period AS (s) | period AEC (s) | period AK4 (s)
Sensors 1,2,3,4 2 30 300
Sensor 5 300 300 -

TABLE III: Scheduling for Hub Nodes

Nodes | Down comm. Up comm. Keep-alive
period A¥ (s) | period ARC (s) period AK A (s)

Hub 1 120 240 2400

Hub 2 120 420 4200

Tables [[I] and [III| provide the scheduling parameters utilized
for the sensor and hub nodes respectively. The Down comm
period AY, determines the frequency of feedback signals
transmitted by the hubs to their respective sensors, making
threshold adjustments invoked by Algorithm ??. The Up comm
period AR is the sensor equivalent for regular communication
frequency.

The sampling and filtering period, denoted as A®, is uni-
formly set to 2 seconds for all sensors except Sensor 5,
which operates with a native sampling period of 300 seconds.
The Regular Communication Period, AR defines the interval
between consecutive data transmissions and is set to 30 seconds
for Sensors 1 through 4, while Sensor 5, aligned with its
native sampling rate, uses A" = 300 seconds. Sensor 1
transmits periodically without perturbation, while Sensors 2
through 4 apply the Greedy Perturbation Algorithm to avoid
simultaneous transmissions, introducing incremental shifts of
100 milliseconds between nodes.

The Keep-Alive Period, AK | is the time interval at which a
sensor transmits a signal if it misses ten consecutive regular
communication periods (Af), so the number of mandatory
communications could only be 10% of the total possible regular
communications per hour. This mechanism prevents prolonged
communication gaps and ensures network connectivity. AX is
set to ten times A%, resulting in 300 seconds for Sensors 1
through 4, and since Sensor 5 employs direct transmission
mode, it does not require a KA signal. While AX primarily
serves as a fallback for extended inactivity, it mirrors the
behavior of regular transmissions at a reduced frequency to
conserve energy.



The hub nodes follow a similar structured schedule. The
Threshold Feedback Signal Period, AT, determines the fre-
quency of feedback signals transmitted by the hubs to their
respective sensors, aiding in threshold adjustments for data
transmission control. Both hub nodes transmit feedback after
receiving four consecutive regular communications, setting A7
to 120 seconds. Additionally, the Hub Communication Period,
AH | regulates the frequency of data aggregation and transmis-
sion from the hubs to the OBN. Hub 1 transmits data to the
OBN every 240 seconds after collecting information from its
associated sensors, while Hub 2 transmits every 420 seconds,
aligning with the 300-second regular communication period
of Sensor 5. The central-hub utilizes either Hub 1 or Hub 2
timeslot to communicate with the Backup Energy Node when
the OBN is absent.

The OBN operates on a standardized communication interval
of 600 seconds, ensuring synchronization across the entire
network. This duration accounts for the OBN’s dual role as both
the primary energy source and the controller for configuration
updates while maintaining efficient data flow and avoiding
transmission congestion.

C. Energy Management Architecture

In this section, we discuss the management of low-energy
scenarios caused by low-charge or absence of the OBN. The
OBN is designed for daily removal for charging purposes
without having to curtail the CDMN operation; however, the
CDMN still needs to be able to post any important health alert
externally during OBN’s removal. As already discussed, this
is provided by the Backup node, which can also emergency
energy infusion in CDMN to cover situations where the patient
fails to put back the OBN within the maximum designed off
period. Backup itself is intended to be worn all the timeE]
and powered by a non-rechargeable and long-lasting battery.
To support this we introduce four energy states for CDMN
operation:

HE: This is a high-energy state where the node operates at full
capacity with normal sampling rates and communication
periods.

LE: This is a low-energy state where the node communicates
only at Keep-Alive (KA) interval, skipping regular com-
munication slots.

LE-I: This is a transient state where the node is in low energy

mode but still inoperational. It is needed as explained

below.

This is a zero-energy state where the node shuts down

and goes into a low-power mode (if any). Only the energy

reception circuit is active and will activate the rest of the
node when the energy level crosses some threshold.

ZE:

Normally, the OBN will provide energy periodically to all
internal nodes, and its absence (whether from energy depletion
or removal) triggers the backup system. A backup node takes

Note that it is possible to remove Backup or change its battery while OBN
is on.

responsibility for network energy provision during OBN’s
absence. The energy distribution system is designed to maintain
minimum required energy levels as far as possible. If the energy
supply stops, nodes transition to progressively lower energy
states until some node reaches ZE. This node notifies its hub
in one last communication before it shuts down (goes to ZE).
The hub could then take appropriate action.

Since different nodes may reach the ZE at different times, the
network should ideally handle loss/addition of a node anytime.
However, this would require hubs and indeed the entire network
to have the capability to reconfigure — both physically and
operationally to cope with changing number of signal streams,
and might even be unsafe for correct actuation. Given the
energy poor environment, we instead strive to maximize the
uptime of the entire network. Thus if any sensor moves into
ZE, we simply shutdown the entire cluster operation since the
other nodes are likely to be close to the shutdown level already.
However, the hub itself remains up as long as possible.

OBN absent/out of energy
OBN ON

Backup OFF

OBN OFF
Backup ON

OBN reconnect/recharged

I 1 Sensor transitions:
1=>ET < HT — 6y
I

Hub transitions:
=»ET < HT — 6y

s.receiveMessage =

h.receiveM =
receiveMessage forcedShutDown

-
ShutDown

ET < LT or
= s.receiveMessage =
forcedShutDown

ET < LT or
= h.receiveMessage =
ShutDown

ET > LT + &, and
s.receiveMessage =
Ready

ET > LT + 6, and
h.zeroSensors= 0

ET > HT

I
I
1
I
I
1
I
I
1
I
I
I
|=»ET > HT
1

Fig. 3: Network State Diagram

The down transition into a state and up transition from that
state must have hysteresis to avoid ping-ponging. We achieve
this by introducing 4 parameters: (1) HE threshold (HT), (2)
ZE threshold (ZT'), (3) HT margin 0y, and (4) ZT margin dp,.
Transition to LE occurs if the energy level falls below HT —
dpr, and upshift occurs when the energy level exceeds H. A
downshift to ZE occurs when the energy level goes below ZT',
and an upshift to LE occurs when it crosses Z1' + dr,. Fig
shows the state diagram of the network operations.

If the entire network or some of its clusters shut down, the
recovery requires a systematic approach as follows:

1) When the OBN returns it provides energy to all nodes in
ZE state KK:***]s this correct?, and waits until a hub
responds If the hub is in LE/HE, it will respond imme-
diately and otherwise it will respond when it transitions
to LE-I state.

3 A shutdown allowed to happen by Backup (while OBN is off) will not be
reversed since Backup needs to conserve its energy.



2) If (or when) a hub is awake, it sends a “wake-up” message
to all its sensors. The sensor will respond immediately if
in LE/HE, and otherwise when it transitions to LE-I. (If
the sensor wakes up before its hub does, it will stay in LE-
I state w/o sending any data/message to its hub). KK:***]
took out “central-hub” here — not needed

3) Once a hub knows that all its sensors are awake, it
transitions to LE state and sends a message to its sensors
to do the same. Normal functioning then resumes.

The state diagram of cluster recovery is shown in Fig |4 where
the transitions between each pair of states are depicted.

V. BACK-UP POLICIES

Backup can use Centralized or Decentralized strategies,
based on its capabilities. However, although OBN and backup
both provide the energy and the set up may seem the same,
there are inherent differences between the two: OBN provides
energy on a schedule. Backup on the other hand, has to choose
the best moment and the best set of receivers to delay the
network shutdown. For this reason we define the survival time
of each node 7 as the time it has until reaching the shutdown.
At time of OBN disconnection T":

T +T;
/ er(t)dt = Ei(T") — ZT, (1)

Where ey, is the actual consumption of the node. To approxi-
mate the survival time (with a fixed time constant, e.g. an hour),
we can use:

. E(T)-ZT;

T= 2
C(fy; +6i) + R; @

Where FE;(T') is the current energy of node 4 at time
t, ZT; is the zero threshold, C' is the transmission cost
and R is the cost of the rest of the operations (all in
%). The values fi and & are the mean and standard de-
viation of communications in the time constant (recep-
tion and transmission), which can be incrementally updated.
It is also possible to
use the same ARIMA
model to predict the
number of communi-
cations and (requires
passing on the values
of the model). Backup
uses Modified Cen-
tralized strategy that
changes the number
of receivers: calculate Fig. 4: Cluster Recovery

the minimum residual time (survival time of the lowest node
could suffice), iterate from 1 to a fraction of the maximum
number of selectable receivers, for each iteration, calculate the
new survival time and the objective would be max min; 7;.

E(h) > LT+,

h.zeroSensors
=0
h.zeroSensors

&y

E(s) > LT + 6,

s.receiveMessage
=wake-up

HK: Fault detection mechanism

VI. EXPERIMENTAL RESULTS & DISCUSSION
A. Simulation Environment

We consider the same proposed simulation environment
from our previous work [10], each implantable sensor node
is modeled with a 0.5F CAP-X supercapacitor (model
GY12R705012V504R [21]]) operating at 3V, which provides
a total energy storage capacity of approximately 2.25J. The
leakage energy cost is determined by considering a quiescent
leakage current of 1 1A, leading to a leakage power of 3 uW,
and over a specified duration, the total energy loss amounts to
0.00097 or 0.00025 mWh. The cost associated with Equivalent
Series Resistance (ESR) is computed using an average current
draw of 2.5mA and a DC ESR value of 570 m{2, resulting in
a resistive power loss of 3.5625 yW and a total energy loss
of approximately 0.00107J or 0.00030 mWh. For rectification,
we assume an ultrasonic-powered rectifier similar to the one
proposed by Laursen, with energy consumption comparable
to the dual-path RF CMOS rectifier reported by Lu et al.
(2017), incurring an energy overhead of approximately 2 mJ or
0.00056 mWh. As the modulation unit for intrabody communi-
cation, we adopt the TI CC1101 RF transceiver, a widely used
ultra-low-power component for physiological signal telemetry
in wireless sensor networksﬂ According to the datasheet, the
device draws a typical transmit current of 14 mA, and the
energy required for one transmission event is estimated at
171.9 pJ, equivalent to 0.00004778 mWh. For demodulation,
we consider a fully digital 28 nm Bulk CMOS BPSK de-
modulator, as proposed in recent biomedical communication
research, which exhibits extremely low power characteristics,
consuming approximately 645.12pJ or 1.791 x 1071 mWh per
operatiorﬂ HK: Is it a battery or a supercapacitor? If it is a
supercapacitor, add the reference to its datasheet - PP: Referred
to the supercapacitor datasheet.

In the subsequent stage of our simulation, each implantable
hub node is modeled with a 0.8F CAP-X supercapacitor
(GY12R76C012V804R) operating at 3V, yielding a total en-
ergy capacity of 3.6J. The leakage energy cost is derived from
a quiescent current of 2 uA, resulting in a power loss of 6 uW.
Over a time window of 300 seconds, the corresponding energy
loss is 0.0018J or 0.0005 mWh. The energy loss attributed
to Equivalent Series Resistance (ESR) is calculated using an
average current of 4 mA and a DC ESR of 440 m(2, leading to
a resistive power dissipation of 7.04 uW, and an overall energy
loss of approximately 0.000021127J or 0.00147 mWh. For the
rectification process, we assume the use of an ultrasound-based
rectifier analogous to the dual-path RF CMOS design proposed
by Lu et al. (2017), with a corresponding energy consumption
of 2mJ or 0.00056 mWh. The modulation subsystem for in-
trabody wireless communication is based on the TI CC1101
RF transceiver, which is well-suited for ultra-low-power appli-
cations such as physiological signal telemetry in body sensor

Ahttps://www.ti.com/lit/ds/symlink/cc1101.pdf
Shttps://www.researchgate.net/publication/358842273_A_28_nm_Bulk_

CMOS_Fully_Digital BPSK_Demodulator_for_US-Powered_IMDs_
Downlink_Communications
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networkﬂ According to its datasheet, the device consumes
a transmit current of 14 mA, and the energy expenditure per
transmission is estimated to be 171.9 uJ or 0.00004778 mWh.
The demodulator is modeled using a 28nm Bulk CMOS
digital BPSK demodulation architecture, with an energy cost
of 645.12 pJ per reception, equivalent to 1.791 x 10~1° mWIﬂ

The OBN is modeled similarly to the Apple Watch Ultra 2
in terms of energy capacity and physical constraints. Although
precise component-level energy breakdowns for the Ultra 2 are
not publicly available, we estimate power characteristics based
on prior Apple Watch models and comparable smartwatches.
The modulator is assumed to consume approximately 1-2 mWh
per hour, while the rectifier and demodulator contributions
are not explicitly documented but are considered negligible
under low-power operation. The Apple Watch Ultra 2 features
a 564 mAh lithium-ion battery and provides up to 36 hours
of usage under typical conditions, with minimal Bluetooth
usage. Additionally, an external backup node (e.g., stomach
patch) is modeled as a skin-mounted device equipped with
a 1000 mAh power bank, offering 3000 mWh of energy.
Currently, there are no publicly documented wearable patches
for physiological signal monitoring that utilize a 1000 mAh
battery, as most designs prioritize compactness and patient
comfort by employing significantly smaller energy storage
solutions. For instance, a study published in Science Advances
describes an at-home wireless sleep monitoring patch powered
by a 150 mAh lithium-polymer battery, achieving a battery life
of approximately 10.55 hours while maintaining wearability
and functional integrityﬂ However, to meet our long-term
operational objective of achieving a battery life of at least
one year, we adopt a wearable research patch architecture
supplemented with an external power bank, as demonstrated
in flexible sensorized garment designs discussed in recent
literatureﬂ We consider a 1000 mAh external Li-ion power bank
operating at 3V, with component-wise energy usage estimated
over 10 hours.

We assume a signal attenuation of approximately 19 dB per
transmission link for a single node. For each additional node
added to the network, an incremental path loss of approximately
1 dB is considered. As a result of this significant attenuation, it
is estimated that approximately 98.4% of the transmitted energy
is lost before reception.

The computational and communication energy costs for each
node are based on metrics used in prior literature on energy-
aware intrabody networks. The energy metrics for transmission
from the OBN and backup node are outlined as follows:

Energy Cost per Action

Each node in the network performs a set of fundamental
operations such as data transmission, reception, sensing, and

Shttps://www.ti.com/lit/ds/symlink/cc1101.pdf
7https://www.researchgate.net/publication/358842273_A_28_nm_Bulk_
CMOS_Fully_Digital_BPSK_Demodulator_for_US-Powered_IMDs_
Downlink_Communications
Shttps://www.science.org/doi/10.1126/sciadv.adg967 1
https://www.mdpi.com/1424-8220/21/3/814

Kalman Filter-based prediction (Only applicable to Hub Nodes)
. These actions contribute to the total energy consumption and
are essential for understanding the energy profile of the system.
The table below summarizes the energy expenditure associated
with each of these actions, calculated based on power and
duration values. This information is vital for optimizing energy
efficiency in low-power sensor networks.

Action Energy con- | Duration
sumed(n]J) (ms)

Transmission 5

Reception 5

Sensing 200 200

KF (Predict) |90 1.2

KF (Predict + | 180 24

Update)

TABLE IV: Energy Cost per Action for Sensor and Hub Nodes

Energy Costs per component:

« 28 nm CMOS Demodulator: 645.12 picojoules or
1.791 x 1071 mWh

e 28 nm CMOS Modulator (Approx value as data not
available): 645.12 picojoules or 1.791 x 10~ mWh

« Rectifier Loss: For sensors and hubs, approx 10% of the
total received power from OBN and Backup. For OBN,
the rectifier cost is considered within the 3.13% of the
natural battery drainage.

Leakage Cost:

« For the sensors, the leakage power is calculated as: P =
3V x 1uA = 3 uW. Over a duration of 30 seconds, the
energy loss is:
E=Pxt=3x10°%x30=9x10"°] = 25 x
10~° mWh.

« For the hubs, the leakage power is: P = 3V X 2 uA =
6 uW. Over 30 seconds, the energy loss is:
E=6x10"%%x30=18x10"*J=5.0 x 107> mWh.

« For the OBN, the leakage cost is accounted for within the
approximate 3.13% natural battery drainage rate and is not
separately computed.

Signal Attenuation: For 1 receiver, average path loss is
estimated around 18 dB, and with roughly a 1 dB loss for
each additional node added.

The following table lists the energy cost of MCU operations
in active mode for each sensor node action. The energy values
are computed assuming an operating voltage of 3V and an
active current of 67 uA. Each action draws energy for the
specified duration and is calculated individually.

Convert to Joules

Action MCU Energy Cost (J)
Transmission 2.79 x 107°
Reception 2.79 x 1078
Sensing 1.12 x 1076
KF (Predict) 6.70 x 107°
KF (Predict + Update) 1.34 x 1078

TABLE V: MCU Energy Consumption in Active Mode (3V,
67 nA)
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In sleep mode, the MCU draws only 1.39 4A at 3V. This
corresponds to a power consumption of 4.17 x 10~¢ W. For a
duration of 1 second, the energy cost in sleep mode is 1.158 x
1075 mWh.

HK: 1.266ms for prediction; 2.452ms for prediction+update

0.4 nano joules per instruction 33 67 micro ampere 1.39
micro ampere 10 micro s wake up from EM2 How much it
takes to transmit 1 byte vs executing 1 instruction

1 byte preamble 1 byte protocol 2 byte CRC 1 byte for
receive id 1 byte for transmit id

16 bytes per packet, 8 instructions/byte=128 instructions

872 instructions total, 104+768

128 instructions+104 overhead=232, However we need to
even increase this one to include a bunch more

B. Low Energy Scenario in one sensor with OBN present

In this experimental configuration, the OBN, modeled as
a smartwatch, is designed to transmit energy to all sen-
sor nodes within the system wirelessly. The OBN deliv-
ers energy every 300 seconds, amounting to a total trans-
mission of 4.7268J per hour, equivalent to 0.375143 mWh.
For each individual sensor node, this corresponds to an en-
ergy delivery of 0.0053510519220 mWh. However, due to
the substantial signal attenuation modeled as a 19dB path
loss (2 receivers are connected, the effective energy re-
ceived by each node is drastically reduced. After account-
ing for this attenuation, the energy received by a node is
approximately 0.003743 mWh per transmission, indicating an
energy loss of about 98.41% during wireless transmission.

Energy Levels for Sensor Node 1 and Hub Node 1 Over Time

—

1.0 —#— Battery Level (Node 1)
=== HT (80%) Node 1

C. Low Energy Sce- I s ivge )
. . —=— Battery Level (Node 6)
nario m one sen- === HT (80%) Node 6
. —-= HT - AH (Node 6)
sor with OBN absent,
Back Up Node is Uti-
lized

The backup node,
represented as a skin
patch with an exter-
nal power source, re-
tains a total energy re-
serve of 150 mWh, ac-
counting for 2% of its
full 3000 mWh capac-
ity. Similar to the OBN, it experiences a 19dB signal at-
tenuation, resulting in a received energy of approximately
1.077442 mWh per transmission at the sensor node. Despite
these losses, the backup node is configured to supply energy to
each node a maximum of two times during critical LE states.

Experimental vali-
dation confirms that a
single recharge from " \
the backup node is os

generally sufficient to

Energy Level (mwh)

0 1000 2000 3000 4000 5000
Batch Index

Fig. 5: Sensor 1 - Low energy Mode
Recovery (BkUp Present)

Energy Levels for Sensor Node 1 and Hub Node 1 Over Time

—e— Battery Level (Node 1)
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—-= HT-aH (Node 1)
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—#— Battery Level (Node 6)
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Energy Level (mWh)
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elevate a node’s en-
ergy level from zero
to its maximum bat-
tery capacity.

HK: You over-
explain the obvious
and under-explain
the results: there is a
page and a half on the
energy consumption.
Also the components have not change. Did you do the
simulations with the old components? have you find the right
components? The simulations are very vague as you did not
mention what each one is: Why does it seem like there is a
smooth upward/downward energy trajectory? doesn’t the total
1 hour loss of the nodes change? If yes, then why does it
look like a line with positive/negative slope in the figures?
The behavior of the hubs also look suspicious: Why does it
seem like the hubs are consuming very much larger amount
of energy?

D. Sensor and hub operations in a low-energy network

VII. CONCLUSIONS

In this paper, we explored an architecture for batteryless
intra-body networks to manage chronic illnesses and examined
the key issue of highly energy-limited operations. In particular,
we explored the trade-off between communication accuracy
and energy efficiency via a closed-loop Kalman filter-based
prediction of the signals. It is seen that in most cases, it is pos-
sible to reduce communications while maintaining a high level
of accuracy significantly. Since communications are generally
quite expensive, the technique can achieve considerable energy
savings as well. We also explored the operation in low energy
availability scenarios where we attempt to keep the network
operational as long as possible by switching to the degraded
mode of operation when the energy-supplying wearable node
has been removed for long periods. In the future, we will
explore dynamic tuning of various parameters in order to adjust
them automatically without any manual intervention.
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