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Abstract—Most large-scale applications define an extensive set
of run-time configuration variables, which must be set properly
for the application to behave well and satisfy the performance
requirements. Due to the complex interdependencies between
parameters, a proper setting is often quite challenging. In this
paper, we propose a modified meta-heuristic based discrete com-
binatorial optimization technique for setting the configuration
parameters. The proposed method has two unique elements:
(a) efficient use of implicit performance function (such as the
one produce by machine learning), and (b) exploitation of the
application domain knowledge in grouping and choosing the
parameters for perturbation. Our extensive evaluation using
available workload traces that do include configuration infor-
mation shows that the proposed technique can provide a lower
cost solution (by ~62%) with faster convergence (by ~45%) as
compared to the traditional meta-heuristic algorithms. Also, our
solution succeeds in finding an average of 30% more additional
solutions than the baseline.

Index Terms—Configuration Modeling, Resource Allocation,
Resource Provisioning, Machine Learning, Meta-heuristics, Sim-
ulated Annealing

I. INTRODUCTION

Configurations are parameter name-value settings that can
be changed at run-time and impact many aspects of the system
behavior, including its performance and cost. Although any
particular entity in the system may have only a few config-
uration parameters, there is a large number of configurable
entities starting with physical components and moving up
the hierarchy into virtualized entities, service layers, libraries,
middleware, etc. A net result is a huge number of configuration
parameters that must be set properly for a performant system
without unreasonable resource usage. Although many of the
parameters may be “baseboard” and not changeable, this still
leaves anywhere from 10s to 1000s of settable parameters [1].
It is also important to note that while in this paper we only
consider performance and cost, many other parameters also
influence these indirectly. For example, strong encryption or
frequent authentication can affect performance significantly.
Similarly, a limit on power consumption can degrade the
performance.

The impact of configurable parameters on the system is
often quite complex with numerous dependencies which are
either not known or not well understood. The problem only
gets worse with high level configuration parameters that are
often provided to ease the configuration job. In most cases, the

effect of the user configurable parameters on the behavior of
a system cannot be easily expressed as an analytical function
because of the non-linearity and interdependencies [2]. An ill
configured system can exhibit undesired symptoms such as
sub-optimal utilization of resources, poor performance, low
availability, etc. Thus, finding a suitable configuration for a
system (i.e. the combination of name:value pairs) to satisfy
the desired behavior is the main operational challenge sought
out by the data center operators.

As stated above, in this paper, we focus on configuration
from the performance perspective; other goals, not addressed
here, may include security, availability, maintainability, etc.
The performance is obviously limited by the resources used,
which can be expressed in form of a generalized cost metric.
For example, in a virtualized environment, the cost may refer
to either the actual cost charged by the provider (e.g., AWS) or
a cost that we decide to assign to the use of various resources.
We will primarily speak of determining values of configuration
parameters that minimize the cost subject to achieving a given
performance threshold, but one could similarly also consider
the problem of maximizing performance subject to a cost
threshold.

We approach the problem as a discrete combinatorial op-
timization problem due to the lack of an explicit function to
express performance as a function of configuration parame-
ters. The conflicting impacts of various parameters and the
dependencies across them invariably make the problem non-
convex, thereby ruling out simple optimization methods such
as hill climbing. Meta-heuristics are often used to solve such
problems and numerous methods have been developed [3].
All methods aim to explore the state space efficiently while
avoiding being trapped in the local minima, of which there
could be many. Fig. 1 illustrates the search process pictorially
with x-axis representing the iterations and y-axis the solution
obtained in each iteration. The algorithm will keep track of
the minima obtained so far, and may or may not discover
the global minima until the maximum iteration count (a
hyperparameter of the algorithm) is reached.

Since our problem involves constrained optimization, we
also need to ensure that any accepted solution is feasible.
In such a setting, it is always helpful to avoid generating
infeasible solutions in the first place, but this is not always
possible. This is where domain knowledge is crucial. Often,



the domain knowledge consists of an abstract relationship
between configuration parameters or rules of thumb that can be
evaluated easily. However, since they are fuzzy, and not strictly
required, they cannot be used as formal constraints. Another
kind of domain knowledge concerns the varying influence
of parameters that can guide which parameters need to be
perturbed and by how much to get to the next proposed
solution. Yet another aspect concerns an estimate of the
amount by which one needs to move to get out of the region
of local optimality to land in another region that can possibly
provide a lower local optimum.
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Fig. 1: Stochastic Tunneling.

A useful notion in stochastic optimization is tunneling [4]
illustrated in Fig. 1, where we “tunnel” from a local minima
to a deeper local minima directly [5]. Traditional tunneling
works in the continuous parameter state space with explicit
objective function f(z) where z is the input vector (i.e.,
configuration vector in our case). It also assumes that f(x) has
first two derivatives. The method works in two steps: (a) find
the local minima, say z*, using the steepest decent algorithm
from the current point, (b) minimize the modified function
h(z) = [f(x)— f(x*)]/||lx—2*||* with & > 1 to determine the
next solution, say z’. It can be seen that with larger «, nearby
points are penalized. (The choice of « can be problematic
and other approaches have been investigated [13]). Thus if we
choose z’ based on the gradient of h(z) away from z*, we
are more likely to go towards a deeper minima than at z*.

Although such a mechanism cannot be applied this tech-
nique directly to our problem, due to implicit f(z) and discrete
parameter space, but we show that such a technique can
improve the solution performance considerably.

The approach explored in this paper rests on three key
ideas: (1) use the solution to the behavior prediction problem
as an “oracle” in a combinatorial optimization to pick a
feasible solution, (2) exploit application domain knowledge
to guide the search, and (3) use an analogue of tunneling
in the discrete space of our problem. Although the domain
knowledge exploitation methods used in our approach are
applicable generally, it is imperative that the modeler must
have both the working knowledge and a decent amount of
configuration related data to test the methodology.

Our research proposes an efficient method for recommend-
ing a configuration for software systems and makes the fol-
lowing contributions:

1) In the absence of a clear analytical function, we use

machine learning (ML) based behavior prediction model

as a surrogate to the objective and/or the constraint
functions,

2) We exploit the domain knowledge that might be fuzzily
stated, with metrics from ML model to reduce examina-
tion of the undesired portions of the search space,

3) We significantly reduce exploration of the states near
a local minima by perturbing the design variables at
relative rates based on their influence on the outcome, and
“tunnel” to a probable area in search of a better solution,
thereby making the search more efficient.

II. CURRENT ART ON CONFIGURATION SELECTION

Current state of art explored during our work shows that
configuration issues are related to resource provisioning and
resource management [6] techniques to optimize latency, task
completion time, data replication, and impact on cache ca-
pacity, delay, and energy consumption, however our work
addresses configuration management as recommending a suit-
able resource allocation (e.g. storage, compute, bandwidth) to
achieve the desired goal (e.g. workload performance, energy,
cost, size, etc). Meta-heuristics approach has been used to
provision Cloud resources for satisfying QoS [7].

To overcome the difficultly in characterizing the behavior
outcome (e.g predicting performance), several studies have
used Classification Regression Trees (CART)-based model [8]
and ML techniques [9] to design a performance influencing
model (PIM) [10]. In our study, PIM is only the first step
to build a surrogate function to solve the combinatorial opti-
mization problem. Our work focuses on choosing a set of con-
figuration parameters that satisfy user workload/performance
demands under given constraints.

III. COMBINATORIAL OPTIMIZATION BASED
CONFIGURATION SELECTION

Let C denote the configuration defined as the vector of
configuration variables Z and their values ¢. These along with
the workload parameters w determine the desired objective
function ¢ subject to some constraints. That is,
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where the functions f() and g;()’s are usually quite complex
and may not be expressible explicitly. Our study is supported
by Ref [11], wherein authors state that performance modeling
is complex since the running time (performance or throughput)
is affected by the amount of resources in the cloud configu-
ration in a non-linear way and performance under a cloud
configuration is not deterministic. It is also worth noticing
that the configuration space is often discrete with intermediate
values being practically infeasible, even if they are concep-
tually meaningful. For example, if the memory modules for
the systems at hand have a minimum granularity of 16GB,
an installed memory of 24GB is infeasible. Thus, defining
continuous or differentiable extensions of the functions f()
and g;() is neither straightforward, nor meaningful. Thus, the



traditional tunneling structure is not possible; also, while one
could estimate the local gradient by evaluating the functions at
nearby feasible points, the value of local search is less clear.

Behavior f() is expressed as the user expectation and can
refer to performance, latency, throughput, etc. The constraints
can represent the cost factor of such a system, heat dissipated
or cooling needs, energy consumed, physical size, etc. Often,
it is desirable to optimize multiple parameters simultaneously;
however, in this paper, we consider objectives and constraints
as a singular function.

A. Basic Approach
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Fig. 2: Design of Algorithms.

Fig. 2 shows the overall scheme explored in this paper.
Given a set of configuration variables (CVs), the first step
is to define an “oracle”, or a model for the forward problem
of performance prediction based on the settings of CVs. As
discussed in [17], statistical machine learning (ML) techniques
work quite well for this. We have also shown that the ML
techniques do not work well for the backward problem of
configuration selection and require large amounts of training
data [22]. We take advantage of the corresponding training
data to determine a relative ranking of importance of various
parameters via Principal Component Analysis (PCA) or sim-
ilar analysis. This helps in both confirming and applying the
domain knowledge such as various relationships (e.g., higher
CPU speed requires lower memory latency), generic rules of
thumb (e.g., additional 64MB of memory per additional VDI
client), or system specific ones that have been observed or
can be deduced from the training data. It is important to
underscore the importance of domain knowledge here, since a
blind application of these techniques is likely to yield incorrect
or misleading results.

The problem to be solved is now to select a configuration
Z (or a few configurations) that provide a performance p
above the lower bound (user desired performance p,) while
minimizing the cost of the solution. The choice of parameter
values in Z can directly or indirectly affect the objective
function, i.e. w cost of the configuration.

We now define the constraint as the desired performance

b p=6>pa @)

where p is the expected performance from configuration Z.
The objective is to find such a configuration £ at a minimum

cost min(g(%)) 5)
The “cost” of a configuration can represent a user desired
metric such as the deployment cost, power consumption, cool-
ing requirements, etc. Data for cost function can be derived
from vendor specification for hardware server and allocated re-
sources (e.g., disk capacity) or other suitable function g(). For
example, k" configuration 2}, for some choice of parameters
such as number of CPU cores, core speed, memory bandwidth,
IO bandwidth, storage capacity, etc. has a cost g(,).

Given the non-convex and non-monotonic influences of
various parameters, the use of combinatorial optimization is
natural for solving the backward problem. In general, this
optimization could be either deterministic or stochastic, where
the latter allows for uncertainty in the objective function.
Although our interest is in the deterministic case, uncertainties
arise naturally in real-world problems (e.g., the cost of the
solution better described by a distribution rather than a single
value). In the stochastic case, the objective is generally to use
a statistical measure (e.g., expected value), so that essentially
the same methods apply in both cases.

All stochastic methods explore a sequence of next states
to find a better solution with different techniques to make a
trade-off between the expense of exploration (i.e., number of
iterations, cost of evaluation) and the quality of the solution.
For the latter, the algorithm must necessarily consider states
where the objective function is worse than the optimum found
so far, which means that a monotonic convergence is generally
not possible.

Because of their stochastic nature, these algorithms do not
have any guarantee that the result will be optimal for every
run. Many comparative studies have been put forward to
prove or disprove the efficiency of a particular method [12].
Therefore, the focus of our research work is not to compare
algorithms, rather we show that embedding domain knowledge
into stochastic methods can help the algorithm to converge into
a solution faster (than an uninformed algorithm). Our work
focused on studying the algorithms for their convergence speed
and their capacity to find good objective function minima. In
this front, we adapted our solution to a familiar stochastic
method, wiz. Simulated Annealing (SA). We explain such
modifications in the following sections.

B. Emulating Tunneling

To apply Tunneling like approach to our context, we first
seek the local minima (step 1) followed by an intelligent
perturbation based on the sensitivity to take us further away
from the current minima (step 2). To prepare for this, we
first determine the relative ranking of each CV in terms
of its influence on the objective function and the complex
constraints. A purely data-driven method for doing this is
the standard principal component analysis (PCA), and should
work well assuming a sufficiently large data-set. Starting with
the most dominant parameter, we form a group by pulling in
other parameters that are known to be related to it (based on



domain knowledge). We then start with the next most dominant
parameter and form the next group, until we have covered all
the parameters. Then our approach with “smart” tunneling can
be described by the following two steps:

1) We approach the local minima by considering the vari-
ation with respect to the leader of the first group. The
gradient needs to be determined by taking a few samples.

2) The tunneling phase then perturbs each group leader in
proportion of the PCA metric and adjusts all others in the
group based on the known relationships

A stochastic optimization process works by randomly jump-
ing from the current state x; to a new state x;; based on some
probability factor p, with an aim to find a local minima z* that
minimizes the objective function f(x). We apply the above
approach with tunneling by enabling the stochastic algorithm
to circumvent the local minima points and rapidly move from
an area of shallow minima (point (a) in Fig. 1) to a region of
deeper minima (point (d) in the same figure), thereby allowing
for faster exploration of solution space and faster convergence
to a good solution. With a configuration problem at hand,
as our objective function cannot be characterized by direct
analytical function, we use the performance prediction oracle
(a black box) functions as a objective function.

We explore ways to tunnel through the shallow minima
(point (b) in the same figure) and avoid the slow dynamics of
the complex objective function. Such tunneling mechanisms
should invariably use the domain knowledge to intelligently
jump the local barriers and avoid uninteresting space (i.e avoid
point (d and e) in the same figure). We group the design
variables together as discrete space tunneling mechanism, to
aid the algorithm from being trapped at a local minimum and
(jump through or) tunnel out of the minimum. We present
the details in the next sections in context to the algorithm we
explore.

C. Generic Design Approach Summarized

The approach described above can be generalized indepen-
dent of the data-set and domain as:

1) Run experiments to collect the data with relevant config-
urable parameters and observable outcome.

2) In absence of a clear analytical function to describe
the relationship between the configurable parameters to
outcome, use suitable a ML model to design an “oracle”
as a prediction engine (a.k.a PIM).

3) Use PCA metrics from the data, determine relative impor-
tance of design variables and group attributes based on
domain knowledge to avoid exploring undesired spaces.

4) Use the above PIM model to represent the objective
and/or constraint function in a stochastic algorithm.

5) To explore new design states, use the PCA metrics as
probability factor, and pertrubate the variables in-groups.

6) Verify new state satisfies constrain using ML based oracle
as a tool.

7) Accept/Reject current design state based on satisfying
criteria.

We explain the modification to a familiar meta-heuristics
based stochastic processes, i.e Simulated Annealing, below.

D. Modified Simulated Annealing (mSA)

Simulated annealing (SA) is a general probabilistic local
search algorithm generally used to solve difficult optimization
problems. The pseudocode [14] for generic SA (gSA) is given
in Algorithm 1. In SA, a state refers to a set of design variables
and a neighboring state refers to a set of values relatively closer
to current design variables. In SA, entropy is represented as
the cost function that has to be minimized. An acceptable state
is a solution to the problem that is being solved.

Algorithm 1: Pseudocode for SA [14]

1 initialize(temperature T, random starting point) ;
2 for ¢in T do
3 p = select_point_from_neighborhood(i) W ;

4 currentCost = compute_currentCost_at(p) ;
5 0 = currentCost - previousCost ;

6 if 6 <0 then

7 ‘ accept_neighbor_point(p) ;

8 else

9

‘ accept with probability exp(-0/T) ¢ ;
10 T=p*TH,;

The SA method has been widely used since the cost function
can be easy to put into practice [14]. Our SA algorithm uses
design variables from the configuration (Z) to represent the
state. The entropy of the system is defined as the cost of
the current state (i.e cost of the configuration f(Z)). The
gSA steps in Algorithm 1 can be summarized as follows:
(1) we first start with an initial annealing temperature (7j)
and a random design state (line 1), (ii) we search for the
next state depending on annealing temperature 7} and a
random distribution (line 4), (iii) we compute the difference
in entropy (J) between the current state and past state (line
5), and probabilistically accepting the current state depending
on Boltzmann probability factor (line 6---9). At line 9, if the
current solution is accepted, we apply tunneling logic to search
for a better local minima. The annealing scheme is defined in
line 10. The algorithm stops after reaching a defined cooling
temperature (line 2).

Our solution is based on very fast simulated annealing
(VFSA) presented by Xu [15], that enhances both the anneal-
ing temperature (line 10) and the perturbation model (line 4).
Lee [16] and others have discussed VFSA in detail and show
the advantages of VFSA over SA. To speed up the convergence
rate of SA, VFSA uses Cauchy distribution function as the
perturbation [16] which is able to realize a narrower search as
the iterative solution approaches an optimum solution, which
accelerates the convergence speed [15].

We discuss the supporting functions of gSA and mSA
in Table I using the following notations: k is the current
iteration, n is the number of design variables, T is the
initial annealing temperature, « is the damping coefficient



TABLE I: Very Fast Simulated Annealing Functions

Entity gSA | mSA

gﬁ?sajlj;g Ty * exp(—a(k — 1)Y/™)

cmges | T ()

Accepanee | G0y | ats <D
0,otherwise 0 ,otherwise

Perturbation 1\ [2e=TI
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neighboring ¢ therwi

state (Si+1) s otherwise
Design .. . .

Variables Individually varied Varied as a group

(0 <a< 1), pand U are uniform random variables between
0 and 1, (B; — A;) is the range of j'" design variable
(1 < j < n), @; is the configuration (design variables) at
ith state, ¢; is the configuration cost at i*" state, p; is the
predicted performance of configuration z; at i‘" state, and p,,
is user given performance.

mSA uses the annealing scheme T}, and Cauchy distribution
perturbation model ¢ from VFSA (see Table I). For acceptance
probability p, mSA makes a slight modification to accommo-
date the case where the next solution has the same performance
but lower cost. If the acceptance probability for the current
state is 1, a new random state is chosen (to avoid getting
stuck in local minima) else a new state in the neighborhood
is chosen.

IV. CONFIGURATION MODELING ISSUE

Given the importance of addressing the configuration prob-
lem, we applied the above design (i.e. combinatorial optimiza-
tion based configuration selection) to several publicly available
data-sets (See Table. II). As these are published data-sets from
various studies, we have no control over the data collected,
experiments run, configuration parameters, variability, etc. We
explain these data-sets briefly below.

A. Cloud Storage Gateway Data-set(CSG)

CSG' [17] is architecturally similar to Edge Computing,
IoT Gateways, etc. which are constrained by limited resource
capacity and placed between the Edge/loT/user applications
and the Cloud platform. A CSG is usually deployed at a
branch office or remote location and has access to a rather
limited local compute/storage and is connected to a Cloud
data center over the Internet. A CSG essentially uses local
storage as a cache for the remote Cloud storage to bridge the
gap between the demand for low-latency/high-throughput local
access and the reality of high-latency connection to the cloud
with unpredictable and usually low throughput.

The observed performance of CSG denoted as ¢, is in-
fluenced by its configuration parameters, (£ in Eq. 2) and
the given workload (w). The configuration parameters include
compute resources (cores, cpu-speed, memory capacity, etc.),

1[CSG] https://www.kkant.net/config_traces/CHIproject

IO path (memory bandwidth, disk IO bandwidth, etc), buffer
space allocation (cache space, meta-data space), etc. A full de-
scription of the CSG system, various configuration parameters
influencing the behavior, real-world workloads, etc. is given
in our earlier paper [17]. We represent the CSG configuration
as a combination of required compute and storage resource
- number of cores nc, core speed cs , memory capacity
me, memory bandwidth bw, and disk 10 rate di. Workload
can be defined by the request arrival rate ar, request size
rs, and the metadata size ms. Now, in the context of CSG
system being studied, we can express Eq. 2 more clearly as:
Z= {ne,cs,me,bw,di} and @ = {ar,rs,ms}. The research
question would then be to find the suitable values for & for a
given o that satisfies the given constraint (Eq. 4) at a minimum
cost (Eq. 5).

B. Configuration Modeling for BitBrains Data Center (BB)

The other publicly available data-set used in this research
is BitBrains? workload trace [18] containing the performance
logs of 1,750 VMs from a distributed data center from Bit-
Brains, which are collected over 5000 cores and 5 million CPU
hours accumulated over 4 months. This data-set (see Table II)
provides specialized interactive services and batch processing
workloads for managed hosting and business computation
including leading banks, insurance companies, credit card
operators, etc.

Workloads for Evaluating BitBrains Authors [18] conduct a
comprehensive characterization of both requested and actually
used resources, using data corresponding to CPU, memory,
disk, and network resources. The initial configuration C of each
VM present in these traces are characterised by the attributes
shown in Table II. With limited knowledge into the details
of the data-set, we formulate the BitBrains VM configuration
as a combination of required compute, storage and network
resource - number of cores nc, memory capacity mc, network
receive bandwidth nwrd, and network transmit bandwidth
nwwr. We characterise the workload as the load on the storage
disks as read request rate dskrd and write request rate dskrd
and observed behavior (¢) as the CPU usage (%).

We can now represent the configuration problem as selecting
the right combination of configuration values (i.e. resources
Z = {nc,me,nwrd,nwwr}) for a given workload (0 =
{dskrd, dskwr}) to satisfy the user defined conditions (Eq. 4
and Eq. 5).

C. Configuration Modeling for Enterprise Data-set (EE)

We group the data-sets of Apache, SQL Lite and Berkeley
DB from Ref. [10, 19, 20, 21] as Enterprise Data-sets>* (EE).
Apache HTTP Server is a highly popular web server. Xu
et al. [1] report that the Apache server has more than 550
parameters and many of these parameters have dependencies
and correlations, which further complicates the configuration
problem we address here. Reference [10, 21] narrows the CVs

2[BB] http:/gwa.ewi.tudelft.nl/datasets/gwa-t- 12-bitbrains (RND500)
3[EE] https://github.com/ai-se/Reimplement/tree/cleaned_version/Data
4[EE] https://g00.g1/689Dve (RawData/PopulationArchives)



TABLE II: Configuration Variables, Workload and Output of the Data-Sets.

Data-Set Domain Configuration Variables & Workload Characteristics @ | Output ¢
CSG [17] Cloud No. of Cores, Core Speed, Memory Capacity, Memory | Request Arrival Rate, Re- | Performance
Storage Bandwidth, Disk 10 Rate quest Size, Metadata Size
BB [18] Virtual No. of Cores, Core Speed, Memory Capacity, Network | Disk Read Throughput, Disk | CPU Usage (%)
Machines | Data Rcvd., Network Data Transmit Write Throughput
Apache [10] | Web Base, KeepAlive, Handle, HostnameLookups, Enable- | N/A Performance
Server Sendfile, FollowSymLinks, AccessLog, ExtendedSta-
tus, InMemorl
SQL Lite | SQL SetCacheSize, StandardCacheSize, LowerCacheSize, | N/A Performance
server [19] Server HigherCacheSize, LockingMode, ExclusiveLock, Nor-
malLockingMode, PageSize, StandardPageSize, Lower-
PageSize, HigherPageSize, HighestPageSize- - - - - -
Berkeley Embedded | havecrypto, havehash, havereplicatio0, haveverifl, | N/A Performance
DB C [20] database havesequence, havestatistics, diagnostic, pagesize,
pslk, psdk, ps8k,psl6k, ps32k, cachesize, cs32mb,
cs16mb,cs64mb, cs512mb

down to only nine CVs as given in Table. II. Berkeley DB
(C) [20] (BDBC) is an embedded key-value-based database
library that provides scalable high performance database man-
agement services to applications. SQL Lite [19] is the most
popular lightweight relational database management system
used by several browsers and operating systems as an em-
bedded database. In producing the data-set, the authors [21]
stress the application to maximum workload and observe
performance data for various configurations. Authors [20, 19]
have used 18 CVs for BDBC and 29 CVs for SQL Lite data-
sets. This expands the configuration space €2 to a larger degree,
and the results show the efficacy of the proposed solution in
such a large configuration space.

We refer readers to the detailed literature at Ref. [10, 21,
20, 19] for a full description of the data-set. With our problem
at hand, the problem (Eq. 2 and Eq. 3) reduces to finding the
best configuration (Z) for a user given performance (p,) at
minimum possible cost.

V. EVALUATION

A. Metrics for Evaluation

Using the above data-sets, we evaluate the efficacy of
our solution in finding a satisfying solution with two key
metrics: (M1) the number of calls to the performance function
(a.k.a oracle), and (M2) the minimum cost of the selected
configuration (i.e Eq. 5). Metric M1 is important as it relates
to how fast the algorithm can find an optimal set of parameters
from the vast configuration space ). Metric M2 may refer
to the monetary cost ($$) of the selected physical config-
uration, resource consumption of the selected configuration
in a virtualized environment, or some other attribute (e.g.,
energy consumption, provisioning difficulty, etc.). Naturally,
metric M2 is generally much more important than M1 (the
computation time), but there are two situations that make
M1 very important: (a) frequent changes in configuration,
which is quite common in current clouds, selection/change
happens frequently; for example, Facebook reports thousands
of configuration changes per day, and (b) models (oracles)
with long running times.

We executed 100s of test cases across all the data-sets, each
test case 7T; referring to a unique combination of w; and ¢y, in
the data-set. We discuss the evaluation results using M1 and
M2 metrics w.r.t the three approaches discussed above, i.e. (a)
Generic Simulated Annealing (gSA), (b) Modified Simulated
Annealing (mSA), and (c) Modified Simulated Annealing with
Tunneling (mSA(T)).

B. Performance Oracle

The efficiency of ML algorithms depends on a variety of
factors including the input attributes and hyper-parameters
(e.g., regularization parameters, learning rate, etc.) and it is
generally not possible to characterize which algorithm works
the best in a given situation. Therefore, we tried several
models and ultimately settled on Logistic Regression, as it
consistently performed well and beat others in most workloads.
An extensive analysis of the model ensured that it does not
suffer from under-fit or over-fit.

C. Using Domain Knowledge to Group Attributes

We incorporate domain knowledge in the algorithm by
dividing the design variables into groups based on their level
of interdependencies. That is, the design variables within
a group show strong interdependence and thus should be
set collectively, but the settings across groups can be done
independently. In theory, such grouping can be done purely in
a data driven manner (e.g., by using clustering techniques), but
this is likely to result in spurious groups unless we have a large
amount of data covering full ranges of various configuration
parameters and the clustering algorithm does not result in
anomalies. The value of domain knowledge is to do a suitable
grouping either entirely manually, or by coercing the clustering
algorithm to prefer certain groupings over others.

In any configuration context, we are likely to have several
generic and usage specific insights into the system. For ex-
ample, in a computing infrastructure, a faster CPU must be
paired with a faster DRAM, else the CPU will simply stall
waiting for the memory. A faster disk is also important, but
much less so, since the IOs involve a context switch whereas
a memory access does not. Similarly, more CPU cores doing
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Fig. 3: Comparing (Savings) gSA, mSA, and mSA(T) for Diff. Data-sets.

TABLE III: Grouping Design Variables for Various Data-Sets

Data-Set | Group Design Attribute Pairs
Group Gl Number of Cores, Memory capacity
CSG Group G2 Core speed, Memory bandwidth
Independently| Data cache, Disk IO rate
varied
BitBrains Group Gl Number of Cores, Memory capacity
Independently| CPU capacity, Network data trans-
varied mit, Network data received
Apache Independently| All CVs
BDBC varied
SQL Lite

independent work will likely need more memory, and for
workloads involving remote 10, both network and IO speeds
must increase in tandem. Grouping of CVs based on insights
avoids exploration of states that are unlikely to be useful and
thus is expected to both speed up the convergence and lead to
better solutions within a given number of iterations. Table III
shows the grouping for different data-sets. It is difficult to do
grouping for other data-sets (Apache, BDBC, SQL Lite) since
the trace description does not say much about the configuration
or the workload.

D. Efficacy of the algorithms (gSA, mSA and mSA(T))

We use the gSA algorithm as the baseline, as it presents the
naive (or uninformed) stochastic method of searching a wide
configuration space for a set of suitable CVs.

In our evaluation for metric M2, the minimum cost of the
solutions with mSA(T) was much less (hence better/desired)
than the solution found by mSA or gSA (shown in Fig 3e).
mSA(T) meets to the solution about 81%, 44%, 62%, 77%,
and 47% less than the gSA solution (for the CSG, BB, Apache,
SQLLite, and BDBC data-sets respectively).

Detailed results are shown in Fig 3 for a selected few
data-sets where we show the histogram of the improvement

in solution cost provided by our two algorithms (mSA and
mSA(T)) over the baseline uninformed algorithm gSA. Here
the X-axis refers to the cost of mSA and mSA(T) divided
by the solution cost of gSA, and expressed as a percentage.
That is, the buckets for < 100% represent an improvement
over GSA, and > 100% represent a degradation. The y-axis
is the count of test cases whose solution cost falls into that
bucket — again, normalized so that it all adds up to 100% of
the test cases. These charts are produced by considering 100s
of test cases and thus represent an extensive exploration of the
configuration space.

Fig. 3a on CSG results shows that in the 1st group (0-10%),
mSA achieved the solution with < 10% of the baseline cost
for 15% of test cases; and mSA(T) further improved this to
22% of test cases. The maximum improvement observed was
in a few cases where the cost of mSA(T) was only 2% of the
cost provided by gSA!

Similarly in Fig. 3b in BB results, in the 6th group, (81
to 100%), mSA cost was about 61-80% of the cost of the
baseline in about 17% test-cases; and mSA(T) improved this
in about 22% of test-cases. The final group (> 100) in all
the sub-graphs show cases where gSA cost was better than
mSA or mSA(T); however, these cases were small in case
of CSG and Apache. With Bitbrains, the evaluation showed
that mSA(T) failed to get minimum cost in about 30% of the
cases (compared to gSA). Note that because of the inherent
randomness in the way the states are explored, no stochastic
algorithm can provide a universally better result in all cases.

Our evaluation results show that mSA(T) can find more
successful results (i.e. correct values of CVs) compared to
gSA. That is, gSA fails to find a result within the allowed limit
defined by a hyper-parameter, i.e, annealing temperature/#
iterations. On an average, mSA(T) surpasses gSA in finding
additional (avg.) 30% results across all data-sets for 500



iterations. This is shown in Fig. 3f for various data-sets and
hyper-parameters (i.e, annealing temperature/# iterations). Ad-
ditionally mSA(T) converges to the solution about 50%, 52%,
28%, 30%, and 65% faster in CSG, BB, Apache, SQLLite,
and BDBC respectively (Fig. 3d).

E. Discussion and Conclusions

In this paper, we presented an efficient methodology to rec-
ommend optimal configurations for large scale software sys-
tems. The problem involves constrained optimization (achiev-
ing minimum cost subject to a performance lower bound)
where the relationship between performance and configura-
tion parameters is not explicit and may involve a complex
machine learning model. We propose a meta-heuristics based
approach enhanced by both the domain knowledge and smart
tunneling techniques. We applied the technique to several real-
world traces where configuration information was included in
the data-set. The results show that the proposed mechanism
outperforms a standard naive uninformed approach by 44-
81% (depending on the domain and data-set) in terms of
the cost of the solution. It also shows evidence of faster
convergence by 28-65%, which means that it is possible to
set the hyperparameter (# of iterations/ annealing temp) to a
lower value without hurting the solution quality.

It is clear that the mSA(T) algorithm outperforms both mSA
and gSA in finding a better minimum cost solution. This is
because (i) our mSA computes entropy as a quadratic function
to give us a wider choice of acceptance and is better able to
avoid getting stuck in local minima, and (ii) by intelligently
grouping the attributes discussed in section V-C, mSA also
avoids exploring undesired search space. By addition of the
tunneling logic, mSA(T) avoids jumping out of local minima
too quickly; instead it explores a few additional states closer
to current local minima with a goal to find a better minimum
cost.

In the future, we will examine how domain knowledge can
be extracted automatically or semi-automatically from the best
practices specifications.
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