
Towards Automated Configuration of Cloud Storage
Gateways: A data driven approach

Sanjeev Sondur
Computer and Information Science

Temple University
Philadelphia, USA

sanjeev.sondur@temple.edu

Krishna Kant
Computer and Information Science

Temple University
Philadelphia, USA
kkant@temple.edu

Abstract—Cloud storage gateways (CSGs) are an essential part
of enterprises to take advantage of the scale and flexibility of
cloud object store. A CSG provides clients the impression of a
locally configured large size block-based storage device, which
needs to be mapped to remote cloud storage which is invariably
object based. Proper configuration of the cloud storage gateway is
extremely challenging because of numerous parameters involved
and interactions among them. In this paper, we study this
problem for a commercial CSG product that is typical of offerings
in the market. We explore how machine learning techniques
can be exploited both for the forward problem (i.e. predicting
performance from the configuration parameters) and backward
problem (i.e. predicting configuration parameter values from
the target performance). Based on extensive testing with real
world customer workloads, we show that it is possible to achieve
good prediction accuracy while ensuring that the model is not
overfitted to the data. The work provides a practical solution to
a very difficult and increasingly important problem in storage
management.

Index Terms—Cloud Storage Gateway, Object Store, Perfor-
mance, Configuration Management, Machine Learning, Opti-
mization.

I. INTRODUCTION

A Cloud Storage Gateway1 is an emerging concept in Cloud
Storage Solutions; wherein the CSG application is installed on-
premise and translates cloud storage object-store APIs such as
SOAP or REST to the block I/O-based storage protocols such
as SCSI, Fibre Channel, NFS or SMB.

Fig. 1. Cloud Storage Gateway Architecture.
Cloud Storage Gateway (CSG) concept was pioneered by

Google [18], and subsequently offered by many leading in-
dustry vendors [1], [3], [4], [9] as a Cloud Storage solution.

1Recently the industry has substituted the word ”gateway” with the word
”controller” to emphasize the idea that their gateway products do more than
just serve as a bridge

As shown in Fig. 1, CSG appliance connects the client
applications running locally to an object store hosted in a
remote cloud data center. Although the remote storage could
be block based, it is almost universally object based due to
many advantages of the cloud model [12]. The advantage of
CSG is that while the user data resides on the cloud storage
devices, it makes the accesses appear locally going to a SCSI
device. Customers deploy CSG to expand storage capabilities
of their local computing infrastructure [23]. For example, a
large video animation customer like Disney could work with
hundreds of graphics files of size 1GB or more, a financial
company may store a large number of fiscal records in medium
size files (say 1-10MB text files). The locally running business
workloads would typically persist or retrieve a large amount
of such data through the CSG. Since a single CSG may be
used by many different business applications with different
persist/retrieve patterns, a proper configuration of CSG is a
very challenging problem.

Data center operators have a huge amount of operational
data collected over time that can be exploited to understand
the system configuration parameters and their influence on
the operational behavior. We keep the discussion focused
by studying the configuration challenges as pertaining to the
customer side CSG system, and not the backend data center
hosted cloud object store system in Fig. 1. We use a CSG
designed and operated by a prominent vendor that we are
not at liberty to disclose. The main goals of our study are
as follows:

• Design experiments to collect performance and configu-
ration data for a large number of configurations of this
CSG.

• Explore the use of suitable machine learning techniques
to build models for solving the forward problem (pre-
dicting performance for given configuration parameters),
and reverse problem (predicting certain configuration
parameters based on target performance).

• Explore how the domain knowledge can be exploited to
reduce the configuration space and enhance the accuracy
of the predictions.

The key contribution of our work is to demonstrate that
we can build robust models for relating user settable system



and hardware parameters to the performance of cloud storage
gateway and thereby debugging the configurations. Even in
cases where such automated analysis fails to provide the opti-
mal result, it is expected to yield configurations that are close
to optimal and thus can be tuned further with far less effort
and time than the prevalent manual approaches whose success
entirely depends on the experience of the administrators. To
the best of our knowledge, the prior work has predominantly
considered performance as a function of workload parameters
rather than the user tunable system parameters.

II. MOTIVATION AND CHALLENGES

We discuss the motivation for our work and highlight the
challenges involved in choosing the right configurations.

A. Motivation for Current Research

Proper configuration management of complex cyber-
systems is a very challenging problem in the real-world, and
yet very much under-appreciated in the research community.
Misconfigurations in large enterprises often account for up
to 80% of the malfunctions and attack vulnerabilities, and
routinely consume days of engineer’s time to diagnose and
fix [28]. Configuration management of data center storage sys-
tems can be particularly complex and labor intensive task [8],
[14], and CSG is no exception. In addition, CSG configurations
combine the complexities inherent in storage system configu-
ration, cache configuration, unpredictable network traffic and
the complexities of back-end cloud systems. Similar to other
cyber-systems, CSG has many configuration parameters or
”knobs” with little clarity on how to set them or what precise
impact they have on the output end.

While working with the commercial vendor of a CSG
product, we noticed that the most common problems were
related to customer complaints about poor performance or
I/O time-out errors. We invariably found that on further
investigation that most of these complaints were a result of
poor understanding of the workload (i.e. request streams) and
the configuration parameters of the CSG. The main source
of difficulties in configuration management are numerous
parameters with complex inter-dependencies that are mostly
unknown or poorly understood with respect to their impact on
the overall performance, availability or user experience [29].

This prompted our research into understanding the rela-
tionship between various parameters in the Cloud Storage
Gateway environment. For example, there are few uncontrol-
lable variables such as eviction rate, cloud storage response,
internet throughput, etc. and some parameters under the user
control such as: workload, hardware characteristics, cache
configuration, etc.

B. Modeling Challenges

When the number of parameters that we wish to vary is
small and known a priori, one could study their impact on
performance via direct measurement, simulation modeling or
even analytic (e.g., queuing) modeling. However, the con-
figuration management problem is quite different from this

in that we have a large number of parameters with intricate
inter-dependencies between their settings and general lack of
understanding of their relative importance from the output
perspective.

It is well known that the storage system performance
depends on the workload characteristics, deployed optimiza-
tions, and their specific configuration (See [14] & refer-
ences therein). Configurations also ”are often difficult and
knowledge-intensive to develop, brittle to various environment
and systems changes, and limited in capacity to deal with non-
steady-state phenomena [22].”

Cloud storage gateway (CSG) is a relatively new paradigm
in cloud storage solutions, and effective methods for its
configuration management is largely unexplored.

III. CLOUD STORAGE GATEWAY

Unlike the cloud storage services which they complement,
CSGs use standard network protocols that integrate with
existing applications and can also serve as an intermediary
to multiple cloud storage providers. Increasingly, CSGs also
provide many sophisticated services such as backup and recov-
ery, caching, compression, encryption, storage de-duplication
and provisioning. A CSG will typically serve multiple clients
using a set of local storage devices (possibly a RAID but
not necessarily) that is seen by the clients as a local block
storage. All clients assigned to this local storage share the
storage, although there might be some internal fine-grain
storage allocation policies that are not revealed to the client.
Each client will be allocated space for its data, metadata, and
log files. The CSG can be viewed as two I/O layers (Fig. 1):
front-end for local user I/O and the back-end for cloud storage
I/O operations. At a minimum, the CSG will provide the ability
of intelligently partitioning the space into data, metadata, and
log files, and a suitable caching mechanism for each so that
data transfers from the backend can be properly handled.

A. Characterizing the Behavior of a CSG

The performance and behavior of a CSG depends on the
hardware platform architecture h (CPU, memory, storage, net-
work, local I/O rate, etc.), workload characteristics k (incom-
ing request rate/distribution, data writes/sec, data reads/sec,
metadata reads/sec, metadata size, etc.) and application goals
p. Generally, the application goals p are : (a) most reads are
satisfied locally (which is essential to match the higher I/O
inject rate to the slower back-end rate), and (b) maintain and
batch writes locally so as to make the writeback more efficient.
These functions along with the management of meta-data files,
rotating log files, garbage collection etc. are normal storage
system attributes that affect the behavior of CSG. Furthermore,
workload characteristics such as burstiness are also important.
Workload and performance may be specified either directly in
terms of resource requirements, or in more abstract terms such
as priority, latency, or resource combination (e.g., a “small”
vs. “medium” vs. “large” configuration). In any case, these are
ultimately translated to individual system parameters, either
explicitly or via policies.

2



It is easy to see that if the workload characteristics k, system
configuration h and CSG configuration r are not matched, the
end users would likely experience undesired performance p
which is usually defined as the read and write rates supported
with certain maximum latency and without any I/O timeouts.
Read/write operations beyond the acceptable range or com-
plete rejection is considered I/O failure. As workloads change
over time (i.e. workload ki deviates from initial assumed
pattern kj), the initial user-defined configuration ri may no
longer support the demands of new workload(s) and cause
undesired end-user experiences.

A major issue in properly configuring the CSG is that
the vendors invariably do not reveal most of the internal
details, and instead expose a limited set of user controllable
configuration parameters to tune the system. A ”user” here
means the system administrator at the enterprise that deploys
the vendor’s product. Often, these user controllable parameters
are not even the actual configuration parameters, but merely
some sizing controls or decision variables that affect multiple
internal parameters. In other words, the knobs visible to the
enterprise are rather fuzzy with little knowledge of what
exactly they do. Of course, this is partly done to simplify
the job of the administrator; a vendor willing to expose all
raw knobs would invariably make them unusable. Thus the
phenomenon of fuzzy knobs with little visibility is an essential
characteristic of real systems and cannot be wished away!
It alone precludes simple analytic models for characterizing
performance of a component like CSG or fine-tuning it for
very specific workload or hardware. With absence of any quan-
tifiable, well-defined correlation or closed loop representation,
configuration management is more an art than science.

B. Complexities in Configuration Control

Generally, as the size of the local storage (henceforth
referred to as ”cache”) increases, we expect the CSG through-
put to increase because more I/O can be handled locally.
The benefit is entirely dependent on how well the caching
mechanism keeps and prefetches ”hot” data. Since the overall
space available for caching is shared by multiple clients, there
is interaction across clients. For example, giving more space
for some clients hurts others, and the net effect is very complex
to predict. This caching mechanism is hidden by the vendor
and not controllable by the end-user, adding to the complexity
of the configuration control. These comments apply to both
data and metadata but with different effects. The metadata
needs to be consulted for every I/O regardless of whether
the corresponding data is in the cache or not. Depending on
the workload and the granularity of access, metadata caching
becomes more dominant than data caching. At the same time,
metadata is generally much smaller than data, and thus it
is much easier to provide generous amounts of storage for
metadata. We explore the data cache vs. metadata size in our
research through varied workload and configurations studies.
The log size should have no influence on performance except
that writebacks of the log would take up some backend

I/O bandwidth. This initial description paves the way for
understanding the complexity of configuring the CSG system.

Incorrect configurations could result in significant competi-
tion between the following three activities:

1) Eviction of modified pages requiring writeback to the
backend object storage which is likely to experience high
latency, limited I/O bandwidth due to network issues, and
perhaps a significant write amplification due to the need
to write the entire object.

2) Cache misses from client requests thereby requiring read-
ing of backend object storage, which experiences similar
issues as writebacks (e.g., significant read amplification
and latency due to transfer of entire objects, for which
the CSG need to make adequate room).

3) Local read/writes performed by the clients which are
expected to be much more frequent and expect a low
latency.

Note that the cache eviction is not complete until the write
confirmation is received from the cloud storage, and the data
must be kept in the cache until then. Consequently, a more
aggressive eviction would only result in fewer entries in the
cache to handle new data requests that must be fetched from
the cloud. The CSG may also need to retry the entire object
operation if unsuccessful. In addition to the whole object
transfers on the backend, the transfer normally uses HTTP
which adds considerable overhead. The varying size of the
object could interfere with the SLA guaranteed to the user
about upload/inject rates. We quantify SLAs based on local
SCSI update traffic generated by the client, and any SLA
violation is seen by the client as I/O timeout or errors. Note
that increasing the cache size does not solve the writeback
problem; in fact, it could even make it worse.

Fig. 2. Modeling as a Queuing System.

IV. CONFIGURATION PROBLEM FORMULATION

The CSG system in Fig. 1 serves as a ’disk cache’ to buffer
the incoming user request and match it with the cloud storage
uploads (or downloads). User requests come over a SCSI bus
at a high arrival rate λin (high throughput, high bandwidth, low
latency) and the backend cloud storage presents a low eviction
rate system λc (high latency / low bandwidth / higher error
retries). Resource allocation for the disk cache needs to match
the kn incoming request streams and the service rates. We
model CSG Controller of Fig. 1 as a Queuing system shown
in Fig. 2. The incoming request stream k can be represented
as:

k = f(ar, rs, rm) (1)
where: k the request stream is a function of: ar the request
arrival rate, rs the size of the request, and rm the metadata

3



size. These request streams are characterized by the real
world customer workloads as given in Table III. Each of
these requests consumes hardware and disk cache resource
for servicing.

The disk cache has to be configured properly to service these
requests. The consequence of mismatch or poor configuration
would be experienced by the user request streams as rejected
requests or I/O timeouts. Note in Fig. 1 that all n request
streams share the same resource of CSG controller. There
is no known functional relationship to analyze the queue
behavior, and the controller has no user controllable factors
to allocate resources per request stream. The relationship
between the input stream, requested resource, queue and the
disk cache is unknown. This leads us to conclude that there
is no clear optimization or queuing technique that can model
the serviceability of the incoming streams. For example, if
the cache size is small and the eviction rate to backend cloud
storage is high, then the system should be able to handle high
requests. The converse means the requests will be dropped.

To add to this complex analysis, the CSG runs on a hardware
platform characterized by core speed, number of cores, mem-
ory capacity, disk I/O capacity and network I/O throughput.
Here, network I/O throughput represents the measurable I/O
throughput to upload an object from the client system to
the cloud storage. The hardware characteristics of the CSG
platform is represented as:

h = f(cs, nc,me,mbw, di, th) (2)
where h the hardware characteristics is a function of: cs
core speed, nc number of cores, me memory capacity, mbw

memory bandwidth, di disk I/O rate and th I/O throughput
measured between the on-premise CSG and cloud object store.
For example, one disk partition dj on three independent disks
has a better I/O rate compared to three individual partitions
on one SCSI disk. Similarly a network card capacity of 10
Gbps would have better eviction rate than a network card
capacity of 1 Gbps. Another evident characteristic is the
performance boost from using a SSD versus a HDD disk.
Again modeling the complex interactions between different
these limited parameters and their relative effect on the CSG
disk cache performance is unknown.

The disk cache is split into three distinct partitions: data
buffer db, metadata md and log space ls. (Section III-B &
Fig. 1). These are bound by the total resource disk space
available dsmax, such that:

dsmax ≥ db+md+ ls (3)
Each of these parameters db,md, ls coupled with the request
stream k influences the behavior of the system as explained
earlier.

Finally, if the configuration r of the CSG is optimized
on a given hardware h, the input stream/ workload k will
experience a performance or service rate of p. We denote this
performance as: p = g(h, k, r) (4)
denoting that the performance (or service rate) p depends on
hardware characteristics h, service rate (or workload) k and
CSG configuration r. Note that Eq. 1, Eq. 2 and Eq. 4 is

a multidimensional vector. Changing any one of the above
parameters will affect the performance output p.

A. Research Questions

We now define our research problem in general terms. For
concreteness, we show a very specific example of the “reverse
problem” in Table I. The values shown are only for illustration.

Problem Statement Example
Given a system archi-
tecture h

640GB RAM, 2 x 1GB/s NIC cards,
10 x 4GHz cores, 0.25GB/s BW to the
cloud from ISP

and a workload charac-
teristics k

5 concurrent users, 10 files, 0.75TB
each in 24hrs, typical file size range
500 to 800GB

and desired application
goals a,

10% warm data (and) encrypted files.

suggest the configura-
tion parameters r

cache size (120GB), metadata
size(30%), log size(25%)

that satisfy the perfor-
mance constraints p

max I/O latency of 500ms, else it is a
read/write/IO failure

TABLE I
GENERIC PROBLEM STATEMENT WITH SPECIFIC EXAMPLE.

This discussion leads us to formulate our research questions:

Q.1 What should be the cache configuration to satisfy the ’k’
request streams.

Q.2 What is the maximum performance of the ’k’ streams
given certain cache configuration constraints (e.g. alloca-
tion of resources).

B. Problem Representation

In general, we define the following:

• A = {a1, a2, · · · an}: a series of goals for each of the n
applications, e.g.: 10% warm data, encryption etc.

• P = {p1, p2, · · · pn}: performance constraints for each of
the n applications, predominantly defined by an accept-
able limits on latency, e.g.: 500ms max latency for both
I/O write and reads.

• K = {k1, k2, · · · kn}: workload characteristics for each
of the n applications. We used real-world workload
patterns observed from end customers of a commercial
industry vendor (See Table III), predominantly defined
by average file size, number of files, users, sub-directory
hierarchy etc.

• H = {h1, h2, · · ·hm}: m hardware characteristics, i.e.
the machines running the CSG application, e.g.: core
speeds, memory, local storage disk characteristics, net-
work I/O bandwidth, etc.

• R = {r1, r2, · · · rl}: l cloud gateway configurations each
specified in terms of system configurations e.g.: 100GB
data cache, 25GB log space, 50GB metadata space, 10
concurrent threads etc.

We are interested in a mechanism that draws a relationship
between the workload characteristics W , system architecture
H , configuration R, performance P and can do the following.

4



1) Verify Configuration - given the system architecture,
workload characteristics, application goals and configu-
ration, determine if the performance constraints are met
with a high probability.

[Hnew,Knew, Anew, Rnew]⇒ Pnew is satisfied (5)
In most cases, only a few parameters are new; however,
because of the dependencies and nonlinear interactions,
it may or may not be possible to exploit the unchanged
parameters. This represents Q.2 of our discussion.

2) Configure - given the system architecture, workload char-
acteristics, application goals and performance constraint,
propose a configuration Rnew that satisfies all the con-
straints. That is, given Hnew, Knew, Anew and Pnew find
Rnew.

[Hnew,Knew, Anew, Pnew]⇒ Rnew (6)
This problem is the reverse of the first problem and is
substantially harder. As in the last problem, only a few
parameters may be new but it may or may not be possible
to exploit the unchanged parameters. This is Q.1 of our
discussion.

3) Predict - Based on a time series of performance data for
a given configuration, with changing workload, predict if
the current configuration is likely to fail.
[Hold, Aold, Rold]and[Ki, Pi], i = 1, 2, ...n⇒ Failure

(7)
This is a variant of Q.1 in our discussion, over a time
period for changing workload.

V. SOLUTION APPROACH

As stated earlier, the complexity of the relationships be-
tween the user settable CSG parameters and the perfor-
mance precludes a modeling/simulation based characteriza-
tion. Therefore, we turn to machine learning based methods to
learn various relationships along with our domain knowledge
into the functioning of the CSG. Machine learning (ML) is,
of course, no panacea; it often requires a significant amount
of training data and the learned model may be ”over-fitted”,
and thus may be unable to accurately predict behavior when
the inputs (workload or configuration parameter values) are
sufficiently different from those for the training data. We will
address this aspect carefully in our analysis.

A. Feature Vector

The feature vector used to support our research is built from
the above equations Eq.(1, 2, and 3) and represented as below.

ar request arrival rate rs size of the request
rm request metadata size cs core speed
nc number of cores me memory capacity
mbw memory bus bandwidth di disk I/O rate
th network I/O throughput db data buffer
md metadata ls log size
p system performance (measured as throughput)

TABLE II
SUBSET OF FEATURE VECTOR SUPPORTING THE PROBLEM.

We have included throughput (a.k.a performance in
bytes/sec) in the feature vector. As explained earlier (Sec-
tion IV), our work defines QoS and SLA in terms of latency.

Any latency exceeding the limit is experienced as I/O time-out.
We do not explicitly include latency in the feature vector since
a configuration that leads to time-outs will be rejected right
away and is not relevant for performance analysis. We discuss
some tests that violated SLA and unacceptable latency in Sec-
tion VI-C; these were attributed to wrong configuration choice
for specific workload constraints. Learning configurations that
cause time-outs (and thereby avoid them) is a reasonable goal,
but much harder and beyond the scope of this work. Therefore,
all our tests used in the analysis are for valid SLA conditions.

There are many parameters relevant to CSG operation that
could potentially affect the performance; however, it is neither
possible, nor practical to consider them all. There is no escape
from applying the domain knowledge to consider only those
parameters that are likely to be controllable or relevant. One
such example is the ubiquitous use of NFS for users to mount
the remote storage device (but still within the local data center
boundaries). NFS has many mount options (rsize, wsize, etc.)
that can be chosen for individual mounts. However, these
parameters are invariably set at default values and unlikely
to be changed. Similarly, although the storage interconnect
speeds (PCI bus speed, SATA/SAS interface speed, etc.) are
potentially important, their selection happens at a much more
basic level (i.e., when deploying the storage device/system)
rather than for performance optimization. Therefore, consid-
eration of these aspects is beyond the scope of this paper.

B. Research Hypothesis

We use statistical machine learning, classification, and
optimization mechanism to learn these relationships. Our
hypothesis is expressed as a function of the above feature
vector. Let ~x = {x1, x2, . . .} denote the vector configuration
parameter values. Let φ(~x) denote the hypothesized functional
relationship to be learned and γ(~x) is the true observed output
for given values of the input vector ~x.

We now have the basics to answer our research question
Q.1 and Q.2 by using the above features and to accurately
design our hypothesis φ(x) and output γ.

For a given workload, a service rate ki, a set of constraints
on hardware hi and CSG configuration ri, we predict the
maximum performance pi by the following hypothesis (i
represents ith variation).

Hypothesis:
φ(ar, rs, rm, cs, nc,me,mbw, di, th, db,md, ls)

Output: γ() = p (8)

Similarly, rearranging the features, and re-writing the hy-
pothesis, we predict the data cache configuration r required
to achieve a given performance p for a given workload (service
rate) k under a set of hardware constraints h.

Hypothesis:
φ(p, ar, rs, rm, cs, nc,m,mbw, di, th)

Output: γ() = (db,md, ls) (9)

C. Classification Problem

In Eq.8, we compute a single parameter p (performance) for
a given set of constraints, and in Eq.9, we compute multiple

5



parameters db,md, ls (data cache size, metadata and log size).
The former is called single label classification and the latter
is called multi-label classification [21], [24]. Computing a
single label/parameter is relatively easier than computing three
inter-related labels/parameters. For our end results, we predict
performance, data cache size etc. as multiple classes (e.g.
performance = {class 1, class 2, . . .} or data cache size = {
class 1, class 2, . . . }). These are called multi-class prediction
(for Eq.8) and multi-class multi-label prediction (for Eq.9).
We will quantify this while discussing workload design and
results in Section [VI-B & VIII].

VI. IMPLEMENTATION DETAILS

We explain our evaluation, workloads and metrics first and
then present the prediction solution.

A. Test Environment

Our test environment (Fig. 3) is comprised of (i) Dell
PowerEdge R320 with 4 cores @ 1.8GHz, 16GiB memory,
3 ATA Disks- each of 500GB and one 1GB Ethernet interface
(ii) Dell PowerEdge R730xd with 8 cores @ 2.1GHz, 32GiB
memory, one SCSI disk of 5495GB and one 1GB Ethernet
interface. Both servers have Ubuntu 14.04 with required tools
and connected to local network. We used different hardware
configurations to study the influence of cores, core speeds,
disk, and memory configurations. On each of these servers,
we partitioned the disk for several cache configurations. The
server is connected to the HDD volumes on a remote cloud
object store service, as NFS mounts. We used C++ and Python
scripting tools for executing the workload and collecting
metrics.

Fig. 3. Cloud Storage Gateway - Test Environment.

Once the test scripts were ready, the evaluation setup for
each experiment involved partitioning the disks for various
configurations, allocate cache/metadata size (see Table IV),
connecting the newly configured server to data center object
store and running the workloads and of course collecting the
metrics. We ran over 100 different combinations of configura-
tions/ workloads and collected the metrics (around 990 tests).
Compared to the huge configuration space and vast research
boundary, this limited tests gave us enough data points to
validate our approach (see Section VIII).

B. Workload Execution

We ran complete experiments on CSG platform from a
leading industry vendor and using workload characteristics
as observed by real-world customers2 as shown in Table III.
These industry observed customer data patterns (size, metadata
etc) vary from familiar SpeedWeb, SpeedRate or TPC patters
used the academia [7], [15]. This also confirms that workload
patterns on object storage systems is largely unexplored.
Additional variants of workloads influencing meta-data size
such as sub-directory depth and hierarchy were also used but
are not shown in the table. File size and number of files
followed a Zipf distribution with alpha of zero for maximum
variance.

Workload Average
file size

No. of files No. of
users

Total file
size

Tiny 4 KB 10,000 25 1 GB
Small 256 KB 10,000 10 25 GB
Medium 1 MB 10,000 5 50 GB
Large 10 MB 1,000 5 50 GB
Huge 1 GB 200 2 400 GB

TABLE III
CUSTOMER WORKLOAD FOR THE TESTED CSG PRODUCT.

C. Metrics Collected

We executed workloads on different servers and various
configurations, and collected metrics on execution time, meta-
data time (e.g. to create sub-directories, open and close
files etc.), throughput in bit/sec. Alongside the workloads
we captured the configuration information about the server
(e.g. cores, core speed, memory, disk capacity etc.) and CSG
cache configurations (i.e. data cache area, meta-data, log size).
We captured the available network throughput independent of
the CSG, using a special RESTAPI tool set. We attempted
a few workloads that would result in I/O timeouts to study
the boundary conditions. Since the performance or throughput
metrics at boundary conditions were meaningless (i.e. zero
throughput or IO timeouts), we discounted these metrics
from our labeled data-set. We ran all the workloads on both
servers for different combination of data cache/metadata size
configurations. The different instances were tested both for the
homogeneous case (all workloads identical) and the heteroge-
neous case (workloads with different file sizes and read/write
ratios). To collect a wide range of samples (test-data), we
ran over 100 combinations of workload and configurations,
executed about 990 of test cases, persisted over 8 million
objects and populated over 5.5TB of cloud object store.

D. Data pre-processing and Classification

For each experiment, we created the ’sample’ using work-
load, configuration, compute servers characteristics, observed
performance into the feature vectors as {2 cores, 1.2 GHz
speed, 16GB RAM, 100GB cache, 50GB metadata, 347Mbps
network I/O, 108Mbps performance etc.}. We classified the
discrete numbers into buckets to give us meaningful insight
into the behavior of the gateway servers and configuration.

2We are not in a position to reveal the details of this CSG due to its
proprietary nature.

6



For observed metrics, a discrete throughput data of 488175
bits/s and 21392622 bits/s was classified into bucket sets
as throughput class 1 or throughput class 4. Similarly a
configuration of cache data or meta-data size of 450GB and
200GB was classified as class 5, 4 and so on. Via such
discretization, we classified the data into buckets as shown
in Table IV. In terms of machine learning, this bucketization
means that the regression problem is transformed into a
classification problem..

Metric No.of
Classes

Bucket Size

Network Through-
put (bits/s)

10 Evenly distributed 100Kbps to 350Mbps
(based on collected metrics)

Performance
Observed (bits/s)

10 Evenly distributed 100Kbps to 350Mbps
(based on collected metrics)

Data cache 7 25, 50, 100, 200, 500, 1000, > 1000 GB
metadata 5 25, 50, 100, 200 & 500GB
Log size 5 25, 50, 100, 200 & 500GB

TABLE IV
METRIC CLASSIFICATION.

VII. PREDICTING PERFORMANCE AND CONFIGURATION

There are well proven algorithms in the field of ma-
chine learning and their applicability is specific to the data
characteristics and domain [21], [24]. Further, the efficiency
and accuracy metrics of the algorithms depend on both the
problem domain and associated parameters like learning rate,
regularization parameter, etc. We explored a wide range of
ML algorithms to find the best fit for our problem domain.
We found that Decision Trees [20] fitted the relationship
between the performance and configuration parameters with
higher accuracy. Using statistical machine learning methods,
Decision Trees tries to infer a split of the training data based
on the values of the available features to produce a good
generalization. The algorithm can handle both binary or multi-
class classification problems. The leaf nodes can refer to either
of the K classes concerned. It is basically an approximation
function working on a multi-dimensional Cartesian space
using piece-wise constant functions. Decision trees have been
used in other storage metrics predictions such as [26] where
authors exploit the trees for response time prediction of a
single disk across different workload parameters. The reverse
problem in Eq. 9, is a multilabel multi-class classification
prediction, where in the end result includes multiple param-
eters: data cache and metadata configuration. Compared to
Decision Trees, we found that Extra Trees classifier [11] gave
us relatively better for predicting configurations in Eq. 9.

A. Two level modeling

Our ML based solution approach is illustrated in Fig. 4.
The working data-set is the used to train the ML Classifiers.
We used two different algorithms and regression classifiers to
predict (i) single label performance value (Algorithm 1) and
(ii) multi-label configuration parameters (Algorithm 2). The
algorithms use a sub-set of data to train the respective model,
using hypothesis in Eq. 8 & Eq. 9. The resulting weights
of the model is used to predict end result for a new query.
The algorithm returns the predicted values, accuracy metric

Algorithm 1: Performance Predictor Model.

1 Procedure PredictPerformance (S, perf, acc, rmsd);
Input: Labelled Data
Output: performance, accuracy, root mean square error

deviation
33 ml← DecisionTrees // Initialization

4 prediction, score, rmsd← 0
5 data← Classify(LabelledData) // Data preparation

6 data← Arrange V ector(data) //(arranged for Eq. 8)
7 train data← split labeled data()
8 model← ml.train(traindata) // Train the model:
9 pred perf ← ml.predict(new data) // Predict perf.

10 // Calculate accuracy and root mean square error:
11 score← compute error(true labels, pred pref)
12 rmsd← calc rmsd(true labels, pred pref)
13 return pred pref, score, rmsd

Algorithm 2: Cache Predictor Model.

1 Procedure PredictCache (S, cache,meta, acc, rmsd);
Input: Labelled Data
Output: cache size, metadata size, accuracy, root mean

square error deviation
2 ml← ExtraTrees // Initialization
3 cache,metadata, score, rmsd← 0
4 data← Classification(LabelledData) // Prepare Data
5 data← Arrange V ector(data) //(arranged for Eq. 9)
6 train data← split labeled data()
7 model← ml.train(train data) Model Training
8 // Predict new cache & metadata configuration:
9 cache,metadata←

ml.predict multi label(new data)
10 // Calculate accuracy and root mean square error:
11 score← compute(true labels, cache,metadata)
12 rmsd← calcrmsd(true labels, cache,metadata)
13 return cache,metadata, score, rmsd

and root mean square deviation. We present the prediction
accuracy, cross validation results and algorithm efficiency
below.

B. Algorithm implementation

The algorithms were implemented in Python using scikit-
learn [5], [17] library. This tool gives both the algorithms,
tuning parameters, cross validation and the associated metrics
such as accuracy, prediction error, etc. For machine learning
algorithm efficiency metrics, see [2].

In order to focus on the configuration management problem
rather than the machine learning details, we used Decision
Tree algorithms that gave us promising results. It is possible
to further tune the algorithm parameters such as number of
hidden layers, search tree depth, iteration limits, scaling factor,
etc., that could give us a closer estimate. It is well known
that the best tuning parameters is application dependent.

7



Fig. 4. Predicting Performance and Configuration.

Our algorithms gave us satisfactory results with the default
parameters, and we decided not to tune them further.

VIII. EVALUATION RESULTS

The evaluation results should tell us how suitable our
approach is to predicting the right performance (Eq. 8) and
a right configuration (Eq. 9). Results closer to ’1’ establish
that our model has a high prediction accuracy. First, we cross-
validate our technique using traditional methods and then show
more extensive validation using closed loop and extrapolation
techniques.

A. Traditional Cross-Validation

1) Preparing Cross Validation Data set: There are several
ways in which the collected data can be split into the training
set and the testing set to verify an algorithm for over-fit/under-
fit (See Monte Carlo cross validation selection [27]). Towards
this end, we first shuffle the data randomly and then divide it
into three equal size buckets. We then use some part of each
bucket for testing and use the rest of the bucket for training.
We now consider two specific cases: (A) Use 90% of each
bucket for training and the rest for testing, and (B) use 80%
of each bucket for training and the rest for testing. For each
case, we use only one bucket at a time, thereby giving three
sub-cases in each case. These combinations are marked as
suffix A.1, A.2, A.3, B.1, B.2, B.3 in the figures below.

2) Predicting Performance - Results: The performance
prediction efficiency is shown in Fig. 5. The bar-graphs have
different sample size and train vs. test data ratios, as shown in
primary (left side) y-axis labels. X-axis indicates the different
test cases. For these test cases, the prediction accuracy is
on secondary y-axis (right side). The results show that our
solution has prediction accuracy around 95% for various
combinations (or about 5% prediction error) and do not suffer
from under-fit or over-fit.

As stated earlier, we are not aware of other public stud-
ies on characterizing the relationship between configuration
parameters and performance of CSG or other systems, and
thus a direct comparison against prior results is not possible
directly. However, we can compare our results against results
from similar techniques used in a different context (e.g.,
performance vs. workload parameters). In particular, the study
by Wang [26] using their CART-based models show a relative

error between 17% and 38% for response time prediction.
Using Inside-Out [13], Hsu reports a performance prediction
error around 9%.

Fig. 5. Efficiency Metrics for Performance Prediction.
3) Predicting Cache Configuration - Results: The cache

prediction efficiency is shown in Fig. 6. The bar-graphs have
different sample size and train vs. test data ratios, as shown in
primary (left side) y-axis labels. X-axis indicates the different
test cases. For these test cases, the prediction accuracy is
on secondary y-axis (right side). The results show that our
solution has prediction accuracy around 75% for various
combinations (or about 25% prediction error) and do not suffer
from under-fit or over-fit.

In cache prediction, we predict multiple parameters, i.e. data
cache size, meta-data and log size. The reason for higher error
is self-explanatory by the nature of complex multi-label multi-
class parameter prediction with limited training data set. We
are not aware of any existing literature on the prediction of
multiple configuration parameters.

Fig. 6. Efficiency Metrics for Configuration Prediction.

B. Extended Validation

In this section, we consider following additional ways of
validating our analysis, which we call as closed loop and
extrapolation based validation as explained in the following
sections.

1) Closed Loop Validation: In the closed loop validation,
we start with a target performance pt to predict the required
configuration ct and then re-estimate the performance pe using
the predicted configuration ct. Such a procedure accounts for
overall error in predicting both the configuration parameters
and the performance obtained using the estimated parameters.
We present the results as delta-error [∆ = pt − pe] shown in
Fig. 8. Our analysis shows that the closed loop validation error
is around 5%, which validates our approach.

8



Fig. 7. Closed Loop Evaluation.

Fig. 8. Closed Loop Evaluation Metrics.

2) Extrapolation: The ML efficiencies shown above illus-
trate the interpolation accuracy of the algorithms. Neverthe-
less, it still represents the ability of the algorithm to work
inside the existing ”boundary”. We tested the extrapolate ac-
curacy of the performance predictor to predict the performance
into an ’unseen’ workload outside the boundaries of the train-
ing set. For this, we filtered out all ’huge’ workloads (Table III)
and trained the predictor independent of these samples. Then,
we tested the performance predictor for these ’huge’ unseen
workloads. On comparing the predicted performance with true
data, this extrapolation case showed an accuracy of 92% and
root mean square deviation of 0.26. On deeper examination,
we found that 3 of 14 test cases missed accurate performance
prediction by ± 1 class (neighboring class).

C. Applicability to other CSGs

The CSG product is becoming increasingly popular with
offerings from several prominent vendors [1], [3], [23]. All
these products offer similar functionality, i.e., NFS mountable
local storage volumes that provide space for caching data,
metadata, and logs. All products provide an object store in-
terface to the cloud. All of them provide similar configuration
capabilities as well, although specific details of configuration
vary. Table V lists the key features of these products and the
configuration knobs they provide (N/C=Not Clear). Given the
similarity between such products, we believe that our analysis
would apply equally well to other CSGs as well without any
significant change to the configuration parameters considered
in equations 8 and 9.

IX. CURRENT STATE OF THE ART

Klimovic and Costa [8], [14] support our complexity prob-
lem involved in analysing the workload data streams and a

Parameter Amazon Microsoft Nasuni Panzuna
Uses NFS Y Y Y Y
Uses local storage Y Y Y Y
Network bandwidth
from CSG to data center

Y Y Y Y

User tunable cache con-
fig.

Y N/C N/C Y

Characteristics of hard-
ware platform

Y Y Y Y

TABLE V
BRIEF OVERVIEW OF OTHER STORAGE GATEWAY CONFIGURATIONS.

wide choice of configuration space to be explored in a cloud
storage system. In designing Selecta, Klimovic address the
storage configuration for Data Analytics workload using TPC
traces on the block storage devices on data center side, while
our work studies the object storage gateway configuration on
the customer side using corporate workloads. Costa [8] state
that configuring a storage system for desired deduplication
performance is extremely complex and difficult to characterize.
Rao [19] show that a traditional control theoretic framework is
inadequate to capture the complexities of resource allocation
for VMs. Ofer [16] use deep learning techniques in object
storage systems to recommend the best strategy for cache
eviction and refreshing data. Their study is the closest that
relates to our work both in terms of application of ma-
chine learning and working with cloud based object storage
systems. While their study applies deep learning to cache
eviction/refresh techniques in object store, we explore the
configuration management of object store based CSG.

Hsu designed Inside-Out [13] to predict performance in
a distributed storage system. They study low-level system
metrics (e.g., CPU usage, RAM usage and network I/O) as a
proxy for measuring high-level performance. Cao [6] evaluated
few popular black box auto-tuning techniques for storage using
macro-workloads generated by Filebench. Their comparative
study supports our research in that optimal configurations
depend by hardware, software, and workloads and that no one
technique is superior to all others.

Almseidin [2] use empirical methods to evaluate best-
fit algorithms for their intrusion detection system. Authors
in [10] apply fuzzy logic and game theory for storage service
selection. They choose the optimal storage service to satisfy
the constraints of price, QoS, etc. Ularu [25] use decision trees
to configure an application and highlight the use of decision
trees on solving a configuration problem because of the wide
solution space to be explored.

All of these works relate performance to workload param-
eters rather than the settable system configuration parameters.

X. CONCLUSION AND FUTURE WORK

In this paper, we present a methodology for the configu-
ration and performance prediction of cloud storage gateway
(CSG), which is an emerging system of crucial importance
in providing scalable access to remote storage. Because of
the large number of configuration parameters and interdepen-
dencies among them, modeling the influence of configuration

9



parameters on the performance is a challenging problem. We
show that machine learning techniques suitably aided by the
use of domain knowledge can provide robust models which
can be used for both the forward problem (i.e., predicting
performance from the configuration parameters) and the re-
verse problem (i.e., predicting configuration parameters from
the target performance).

We show that our models can provide performance predic-
tion accuracies in the range of 5% without requiring large
amounts of data. The prediction accuracies are worse when
multiple configuration parameters are predicted, but still re-
spectable (in 20% range). We extensively study the robustness
of the proposed method by doing both closed loop validation
and extrapolation studies and show that they accuracies re-
main acceptable. We believe that similar methodology can be
applied to other systems as well, and we will examine this in
our future work.

Our on-going and future work will focus on improving the
efficiency of the algorithms. One future extension is to update
the configuration incrementally based on the performance
data using control theoretic means. Another direction is to
continuously monitor the performance and the workload in
order to adapt the configuration gradually as the workload
changes. Commercial vendors may provide similar gateway
solution using a VM-image hosted at their data center. Lessons
learned from this research can be expanded to auto-tune the
hosted gateway solution and back end cloud based object store
configurations.

Acknowledgements

This research was supported by NSF grant IIP-330295.
Discussions with Dr. Slobodan Vucetic of Temple University
were highly valuable in devising the extended validation
techniques presented in the paper.

REFERENCES

[1] Microsoft StorSimple Gateways. https://azure.microsoft.com/en-
us/services/storsimple/.

[2] ALMSEIDIN, M., ALZUBI, M., KOVACS, S., AND ALKASASSBEH,
M. Evaluation of machine learning algorithms for intrusion detection
system. In Intelligent Systems and Informatics (SISY), 2017 IEEE 15th
International Symposium on (2017), IEEE, pp. 000277–000282.

[3] Amazon Storage Gateway. https://aws.amazon.com/storagegateway/.
[4] Avere Storage Gateway. http://www.averesystems.com/solutions/cloud-

storage-gateway.
[5] BUITINCK, L., LOUPPE, G., AND ET.AL., M. B. API design for

machine learning software: experiences from the scikit-learn project.
In ECML PKDD Workshop: Languages for Data Mining and Machine
Learning (2013), pp. 108–122.

[6] CAO, Z., TARASOV, V., TIWARI, S., AND ZADOK, E. Towards better
understanding of black-box auto-tuning: a comparative analysis for
storage systems. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18) (2018), pp. 893–907.

[7] CHAHAL, D., AND NAMBIAR, M. Cloning io intensive workloads
using synthetic benchmark. In Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering (2017), ACM,
pp. 317–320.

[8] COSTA, L. B., AND RIPEANU, M. Towards automating the config-
uration of a distributed storage system. In 2010 11th IEEE/ACM
International Conference on Grid Computing (Oct 2010), pp. 201–208.

[9] Ctera Storage Gateway. https://www.ctera.com/technology/cloud-
storage-gateways/.

[10] ESPOSITO, C., FICCO, M., PALMIERI, F., AND CASTIGLIONE, A.
Smart cloud storage service selection based on fuzzy logic, theory of
evidence and game theory. IEEE Transactions on Computers 65, 8 (Aug
2016), 2348–2362.

[11] GEURTS, P., WEHENKEL, L., AND D’ALCHÉ BUC, F. Kernelizing the
output of tree-based methods. In Proceedings of the 23rd international
conference on Machine learning (2006), Acm, pp. 345–352.

[12] GRACIA-TINEDO, R., SAMPÉ, J., ZAMORA, E., SÁNCHEZ-ARTIGAS,
M., GARCÍA-LÓPEZ, P., MOATTI, Y., AND ROM, E. Crystal: Software-
defined storage for multi-tenant object stores. In Proceedings of the 15th
Usenix Conference on File and Storage Technologies (2017), USENIX
Association, pp. 243–256.

[13] HSU, C.-J., PANTA, R. K., RA, M.-R., AND FREEH, V. W. Inside-out:
Reliable performance prediction for distributed storage systems in the
cloud. In 2016 IEEE 35th Symposium on Reliable Distributed Systems
(SRDS) (2016), IEEE, pp. 127–136.

[14] KLIMOVIC, A., LITZ, H., AND KOZYRAKIS, C. Selecta: heterogeneous
cloud storage configuration for data analytics. In 2018 {USENIX}
Annual Technical Conference ({USENIX}{ATC} 18) (2018), pp. 759–
773.

[15] NAMBIAR, R., AND POESS, M. Industry standards for the analytics era:
Tpc roadmap. In Technology Conference on Performance Evaluation and
Benchmarking (2017), Springer, pp. 1–8.

[16] OFER, E., EPSTEIN, A., SADEH, D., AND HARNIK, D. Applying deep
learning to object store caching. In Proceedings of the 11th ACM
International Systems and Storage Conference (New York, NY, USA,
2018), SYSTOR ’18, ACM, pp. 126–126.

[17] PEDREGOSA, F., VAROQUAUX, G., AND GRAMFORT, A. E. Scikit-
learn: Machine learning in Python. Journal of Machine Learning
Research 12 (2011), 2825–2830.

[18] PRAHLAD, A., MULLER, M. S., AND KOTTOMTHARAYIL, R. E. Cloud
gateway system for managing data storage to cloud storage sites, 2010.
US Patent App. 12/751,953.

[19] RAO, J., BU, X., XU, C.-Z., WANG, L., AND YIN, G. Vconf: A
reinforcement learning approach to virtual machines auto-configuration.
In Proceedings of the 6th International Conference on Autonomic
Computing (New York, NY, USA, 2009), ICAC ’09, ACM, pp. 137–
146.

[20] SAFAVIAN, S. R., AND LANDGREBE, D. A survey of decision tree clas-
sifier methodology. IEEE transactions on systems, man, and cybernetics
21, 3 (1991), 660–674.

[21] SOROWER, M. S. A literature survey on algorithms for multi-label
learning. Oregon State University, Corvallis 18 (2010).

[22] TESAURO, G., ET AL. Online resource allocation using decompositional
reinforcement learning. In AAAI (2005), vol. 5, pp. 886–891.

[23] Death of a middleman: Cloud storage gateways and their evolution.
https://www.theregister.co.uk/2015/05/25/cloud storage gateways/?page=2,
2017.

[24] TSOUMAKAS, G., AND KATAKIS, I. Multi-label classification: An
overview. International Journal of Data Warehousing and Mining
(IJDWM) 3, 3 (2007), 1–13.

[25] ULARU, E. G., PUICAN, F. C., SUCIU, G., VULPE, A., AND
TODORAN, G. Mobile computing and cloud maturity-introducing ma-
chine learning for erp configuration automation. Informatica Economica
17, 1 (2013).

[26] WANG, M., AU, K., AILAMAKI, A., BROCKWELL, A., FALOUTSOS,
C., AND GANGER, G. R. Storage device performance prediction with
cart models. In The IEEE Computer Society’s 12th Annual Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, 2004.(MASCOTS 2004). Proceedings.
(2004), IEEE, pp. 588–595.

[27] XU, Q.-S., LIANG, Y.-Z., AND DU, Y.-P. Monte carlo cross-validation
for selecting a model and estimating the prediction error in multivariate
calibration. Journal of Chemometrics: A Journal of the Chemometrics
Society 18, 2 (2004), 112–120.

[28] XU, T., AND ZHOU, Y. Systems approaches to tackling configuration
errors: A survey. ACM Computing Surveys (CSUR) 47, 4 (2015), 70.

[29] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVASUNDARAM, L. N.,
AND PASUPATHY, S. An empirical study on configuration errors in
commercial and open source systems. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles (2011), ACM,
pp. 159–172.

10


