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Abstract—In this paper, we present C-FAR, a framework
for reasoning about anomalies in road-based intelligent trans-
portation systems (ITS) based on video monitoring by the
roadside camera infrastructure. The anomalies could span a
broad temporal and spatial ranges, including fine-grain (e.g.,
unsafe interactions among moving vehicles in real-time), medium-
grain (e.g., aggressive/unsafe driving styles of individual vehicles
over longer periods/distances), and coarse-grain (e.g., ensemble
properties of the traffic over even longer horizons). Unlike the
traditional approaches of recognizing individual activities via
deep learning, C-FAR does so only for the primitive movements
and activities and then builds a comprehensive event logic
framework to deduce and predict the anomalies as specified by
suitable spatio-temporal assertions. It also provides an optimal
resolution of the detected/predicted anomalies by identifying the
minimal changes in the controllable parameters of the system.
We have implemented a prototype system and used it to analyze
on three different real-world traffic data sets. We show that the
proposed scheme can predict anomalies with over 84% recall
level at 95% confidence level approximately 4.05 seconds before
the incident.

I. INTRODUCTION

With rapid advances in image processing and machine
learning, it is becoming possible to monitor critical infras-
tructures to determine “anomalies” (or irregular behavior) in
real-time to maintain safety and smooth operation. In this
paper, we focus on anomaly detection in road based Intelligent
Transportation Systems (ITS) and propose a novel method
based on the spatio-temporal composition of simpler activities
learned through deep-learning. We consider scenarios in the
near future where the traffic may consist of a mix of cars with
different automation levels [1] and fuels, including the rapidly
advancing EV technology.

A. Current Work on Anomaly Detection and Its Limitations

Anomaly detection is a well-researched subject but primar-
ily focused on detecting specific situations. Several studies
attempt to detect anomalies automatically as “outlier” events,
e.g., walking/riding the wrong way on a one-way path [2]–
[4]. In [3] the authors developed a model that efficiently
detects particular scenarios (e.g., two people fighting based on
their movements). The current trend in the field is to capture
even more complex activities with more sophisticated deep-
learning (DL) models. Several deep learning methods have
recently surfaced as non-parametric alternatives for anomaly
prediction. Major literature survey papers on DL techniques
in traffic flow analysis/prediction are contained in [5] and [6].

Another survey paper, [7] discusses deep learning methods for
anomaly detection in surveillance videos in detail, including
open problems and analysis of supervised and unsupervised
methods. The most widely used techniques utilize recurrent
neural networks (RNNs) – more precisely, Long Short-Term
Memory models (LSTM) – either alone or in conjunction
with Convolutional Neural Networks (CNN) to learn from
data sequences and to capture spatial information about road
networks in addition to capturing long-term temporal patterns.

The difficulty with such DL models is their complexity;
therefore such approaches are unscalable not only because
of the enormous amounts of data needed to train complex
neural nets such as LSTMs but also due to the increasing
number of activity scenarios and the deteriorating accuracy
of recognizing them. Also, much of the research focuses on a
small geographic area or a brief period, raising concerns about
scalability [8]. Another major challenge in deploying a hybrid
deep learning model that incorporates both spatial and tempo-
ral modeling is related to the distinction between training and
the horizons they are used for prediction. While some research
has demonstrated that hybrid deep learning architectures can
enhance performance in certain conditions [9], others continue
to debate the necessity and efficacy of fine-tuning such models.

B. Our contributions

In this paper, we take a completely different logic based
approach, C-FAR that involves learning simpler activities and
then combining them based on the domain knowledge (e.g.,
motion physics) to address some of these limitations. We use
deep-learning only to recognize simple activities, which can
be done quickly and with a high degree of accuracy. We then
define other, more complex activities by using a composition
of simpler activities. The composition naturally requires track-
ing various events and spatio-temporal relationships between
them. The anomalies could then also be identified using a
similar composition, and thus their occurrence formulated as
assertions involving spatio-temporal logic constructs. Since
this framework explicitly handles the temporal evolution of
the events, it can also predict the anomaly occurrence in
the near future (instead of simply detecting it after it has
occurred). We further exploit our framework to optimally
resolve the anomaly by exploring the perturbations required
to avoid the predicted anomaly. The resulting “correctional
advice” can then be provided to the driver/driving system for
the application.



Compared with existing RNN-based methods [10], [11], the
C-FAR framework offers three key advantages: (a) deep learn-
ing of simple activities, which can be done very accurately,
(b) a highly flexible way of defining the composite activities
and anomalies, and their resolution, and (c) extensibility as
the system or anomaly definitions evolve. We evaluate our
approach on several datasets and show that it can detect and
predict an anomaly with an accuracy of up to 91% and a recall
rate of up to 85%. Additionally, it can anticipate anomalies
much earlier (4.05secs vs. 2.15secs [10]) and resolve 100% of
anomalous cases.

To the best of our knowledge, this is the first paper that
attempts to predict complex events from a composition of
simpler events where the weights are not fixed in advance.

C. Paper organization

The remainder of this paper is organized as follows. Sec-
tion II discusses anomalies in ITS. Section III discusses
formal modeling of the anomalies. Section IV presents the
proposed framework. Experimental evaluation and results are
summarized in section V. Section VI then concludes the paper.

II. ANOMALIES IN ROAD-BASED ITS

A. Case for Video-Based Anomaly Detection

We assume the deployment of Road-Side Infrastructure
(RSI) to comprehensively monitor the road segments through
smart cameras mounted on every light pole. Each camera
monitors the traffic in its view and does some simple image
processing tasks such as object detection and tracking in each
frame and data transmission to the next level, often known
as the Road-Side Edge Controllers (RECs). The tracking
algorithms can also avoid transmission of redundant frames
and further adapt to the available transmission bandwidth as
in our earlier work [12]. The RECs receive video streams
from multiple cameras along a road segment and use them
for flexible monitoring of activities and anomalies.

Such a system can augment the increasing array of safety
features in the vehicles, commonly known as ADAS (auto-
mated driver assistance systems). Each vehicular ADAS con-
siders safety from a local perspective; instead, the monitoring
RSI can provide a global perspective and warn the vehicular
system or the driver accordingly. A similar mechanism can
also be used in other environments such as hospitals, senior
care centers, factories with only a few workers, etc.

Given the increasing processing power in smart cameras, the
detection/tracking of essential objects can be done by camera
itself. Further processing, including perspective transformation
and estimation of orientations and speeds of the objects may
be done by the camera itself or by the RECs. The REC
can then build a spatio-temporal logic model of the situation
that includes all “facts” of the anomaly situations and the
supporting “theories” (i.e., Newton’s laws, arithmetic, etc.).

B. Type of Anomalies

In general, anomalies can occur at multiple temporal and
spatial scales. In ITS, we can identify fine-grain, medium-

grain, and coarse-grain anomalies. A fine-grain anomaly refers
to the interaction between adjacent vehicles or vehicles and
other objects (e.g., pedestrians, objects on the road, etc.) with
safety implications. This includes the relative movements (e.g.,
distance and how it changes) that may damage, injure, or loss
of control. They are the most critical and the most difficult to
handle since they must be predicted quickly and yet provide
at least 1-2 seconds for corrective action to be taken.

The medium-grain anomalies concern individual vehicle’s
behaviors that are detrimental to the safety and efficient
driving (e.g., weaving through the traffic, persistent acceler-
ation/deacceleration pattern, etc.). Note that monitoring such
anomalies requires behavior over longer periods (e.g., minutes)
and spatial spans (e.g., 100s of meters). Automated vehicles
that have been compromised due to security attacks or HW/SW
malfunctions could show an even broader range of abnormal
behavior, thereby making automatic detection crucial. Finally,
the coarse-grain anomalies, which concern congestion on the
road, feeder roads, and at fueling stations. These anomalies
could have extended relevance, such as the congestion at
multiple EV charging stations in an area could imply stress
the smart grid.

We largely focus on fine-grain and medium-grain anomalies
in this paper. The fine-grain anomalies include: rear-end or
front-end collisions, intersection collisions, lane-change col-
lisions, and collision with pedestrian/animal on the road. The
medium-grain anomaly pertains to aggressive driving behavior
including speeding, weaving in and out of traffic, running
through pedestrian crosswalks, etc. For fine-grain monitoring,
the interest is primarily in detection conditions that may cause
a collision rather than the collision itself.

C. Challenges in Compositional Anomaly Detection

The anomaly detection problem can be formulated as a
Boolean satisfiability problem so that the popular SMT (sat-
isfiability modulo theory) based tools can be used along
with suitable theories as stated above. However, most of the
assertions involved depend on time and space, which can be
expressed using a temporal logic such as Linear Time Logic
(LTL). However, a plain LTL expression makes a definitive
statement about the future (e.g., an assertion holds until some
event happens). Instead, we need a new notion of a fluent
whose validity can change at any time instant. There are
several temporal logics built using fluents and assertions [13],
[14]. A popular framework for this is Event Calculus [15] that
we use here. Another calculus is Situation Calculus (SC) [16],
but it specifies a sequential occurrence of actions and does not
allow time evolution.

The order in which traffic-related events occur and the
relationships between successive traffic situations may have
an effect on whether an anomaly occurs. To capture this, the
model should represent event preconditions, time-dependence
of events, including absolute event times, and their impact on
the traffic flow. Event Calculus (EC) provides constructs to
reason about situations, events, and changes in time, allowing
a precise specification of time relationships between situations
and events, which is critical for describing traffic anomalies.
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In addition, concurrent actions can also be specified in EC.
Since numerous factors influence the traffic events and

hence anomalies in the real world (e.g., weather, road con-
ditions, traffic controls/regulations, driver behavior, etc.), the
assertions in the EC formulation would generally be based on
these aspects, even though direct modeling of these factors is
not needed. For example, speeds can be assumed to be upper
bounded and consistent with the macroscopic fundamental
diagram [17] or its recent extensions [18].

III. FORMAL ACTIVITY MODELING
A. Defining Events and Fluents

The main entities defined in the EC are as follows:

• Events: actions that occur at a certain point in time.
• Fluents: entities that modify their state as a result of

occurrence of event or an action. Each fluent can be
initiated or terminated by multiple events and has a time
duration.

• Predicates: entities that specify when events occur or the
state of the fluents at various points in time. The EC spec-
ifications include a basic set of predicates. However, extra
predicates can also be defined based on the requirements
of the user.

• Constraints: take the form of rules that define the rela-
tionship between fluents and events.

• Domain independent axioms: are the default formalism
logics that define the relationship between the predicates.

In our work, we use an efficient dialect of the Event
Calculus, termed “Event Calculus for run-time Reasoning”
(RTEC) [19]. RTEC is an open-source implementation of the
EC in Prolog and uses LTL with integer time points. RTEC
implements novel techniques for identifying complex events
from a set of primitive events that are also scalable to large
volumes of complex events. Simple implementations of EC
are time and memory-intensive, making them unsuitable for
developing real applications. This is because each time the EC
engine is queried, the computation is restarted, and the validity
intervals for all fluents are recalculated. RTEC addresses these
issues by developing a technique for caching the results of
sub-computations. Additionally, the indexing technique used
in RTEC makes it disregard data streams that are irrelevant to
the current queries.

TABLE I
TABLE: MAIN PREDICATES OF RTEC

Predicate Meaning
hA(E, T) Event E happens at time T
hF(E, I) Even E happens for I intervals
in(F=V) Initial value of fluent F =V at time 0
hoA(F=V, T) Value of fluent F holds at V at time T
hoF(F=V, I) Value V of fluent F holds for I intervals continuously
inA(F=V, T) Fluent F with value V initiated at time T
tA(F=V, T) Fluent F with value V terminated at time T

An event description in RTEC contains rules that define the
event instances using the hA and hF predicate. The fluents
that are time-varying properties and the effects of events on
fluents are defined using the inA and tA predicates. The value

of fluents at any time point is defined using the hoA and hoF
predicates. If F is a variable ranging over fluents, the term
F=V denotes that variable F has a value V. There also exists
Boolean fluents with values true or false. The Table I shows
the predicates used in RTEC tool.

B. Detecting and Predicting Anomalies

Identifying anomalies through a spatio-temporal assertion
checking can be regarded as “detection” when a specific event
such as a collision is imminent or significant traffic congestion
has already occurred. However, if we can anticipate the event
well enough in advance, we can do it as a “prediction”. There
is an apparent tradeoff between the accuracy of prediction and
how far in advance the prediction can be made. Nevertheless,
since some level of false positives is preferable to the anomaly
actually occurring, an earlier prediction is usually preferable.
The prediction is necessarily limited to the factors that are
comprehended by the model; for example, without an accurate
model of driver actions, we cannot predict what the driver
might do in a certain anomalous situation. However, to the
extent that such knowledge is available, it can be easily
included in our framework.

In reality, detecting an anomaly cannot always be reduced
to a simple Boolean condition to be satisfied. Instead, the
anomaly is usually characterized as a confluence of several
conditions of varying importance. As a trivial example, if dx
is the distance to the next vehicle in the same lane, and dy
is the clearance between vehicles in adjacent lane, we may
want to associate higher importance to dx<x0 (i.e., dx going
below the critical value x0) than to dy <y0 i.e., dy going below
the critical value y0). One way to achieve this is to associate a
weight, say wi, with the ith condition, and use

∑
iwi>W0 as

an indication of anomaly, where W0 is a predefined threshold.
In general, some conditions (the most important ones) may

be considered as hard in that they must hold individually. In
contrast, others (the less important ones) may be regarded as
soft in that they are considered together through their overall
weight. It is also likely that the weights are not static but
depend on various spatio-temporal aspects and context (e.g.,
day vs. night time, roads with different speed limits, etc.) This
can be handled except that a weight change would require that
we pause all current condition evaluations, change all weights
that need to be changed simultaneously, and then resume the
evaluation.

To handle hard/soft conditions, we can use an extension to
the Boolean Satisfiability problem known as Weighted Partial
Maxsat (WPM2) where we represent each condition as a
clause in conjunctive normal form (CNF) representation and
designate each clause as either hard or soft with a given
weight. We then have an optimization problem to find an as-
signment that satisfies all hard clauses and minimizes the total
weight of soft clauses. Solution methods for such problems
are currently a hot topic, with many approaches and are a
prominent part of the annual MaxSAT competition [20]. The
solvers include both “complete” methods (e.g., deterministic
search) and “incomplete” ones (combinatorial optimization
based) [21]. We shall use the latter approach as it caters to
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both detection and resolution.

C. Resolving Anomalies

When applied to the optimization problem as in III-B, a
WPM2 solver would return an UNSAT core C ′ in case of
anomalies. The UNSAT core consists of the rules and the
clauses involved in the anomaly. For resolving the anomaly,
we need to perturb the underlying variables of the unsatisfi-
able clauses so that they become satisfiable. For example, a
clause such as (speed< 60∨distance> 2) will be treated by
WPM2 as the CNF clause (x1∨x2) where x1 =speed< 60
and x2 =distance> 2, and (x1,x2) denotes the clauses and
associated variables that are perturbed to resolve an anomaly.
To the best of our knowledge, all work on WPM2 stays
strictly at the Boolean level and has no knowledge of the
underlying conditions or variables. We address this through
a combinatorial optimization approach, for which numerous
algorithms exist. We have compared the prominent algorithms
in a different context [22], and found that (Dynamically
Dimensioned Search) or DDS [23] generally works the best.
It initially perturbs most variables but fewer of them as the
iterations proceed, akin to temperature decrease in Simulated
Annealing.

The key to finding a near-optimal solution quickly in com-
binatorial optimization algorithms is the use of situations or
ongoing events. The perturbations to the solution made at each
stage represent various correlations and dependencies. Hence
to resolve an anomaly, the situation-based DDS intelligently
perturbs the variables, i.e., based on current situations or
events, and selects the clause to perturb that has the most
significant influence on the anomaly. Note that only the ve-
hicular parameters (e.g., speed, acceleration, orientation, etc.)
are perturbable parameters for anomaly resolution; we cannot
change anything about other objects that the vehicles interact
with (e.g., pedestrians, animals, static objects, etc.) cannot be
perturbed.

One other unique aspect of anomaly resolution is that it
is a constrained optimization problem, with the constraint
being the satisfiability of the modified formula that ensures the
anomaly no longer exists. In this paper, we use the epsilon-
constraint satisfaction method, which appears to work quite
well in practice. This method essentially quantifies the notion
of “degree of feasibility” based on how close the proposed
solution is to the constraint boundaries [24]. This is then
used along with the current cost to decide how to perturb
the variables.

IV. COMPOSITIONAL FRAMEWORK FOR ANOMALY
RESOLUTION

Fig.1 shows our overall framework, named C-FAR, which
consists of two stages. The first stage is a lightweight object
detection model using a convolutional neural network (CNN)
model called YLLO that we have developed for video analysis
in [12]. YLLO stands for You Look Less than Once and
refers to the highly efficient processing of video sequences.
The second stage for each detected object (e.g., vehicles,
pedestrians, etc.) is a spatio-temporal logic-based reasoning

system that captures the relative movements of the objects
in real-time to detect/resolve anomalies using a combinatorial
optimization-based approach.

Fig. 1. Compositional Framework for Anomaly Resolution (C-FAR)

A. CNN Based object detection and tracking

YLLO is a lightweight object detection technique based on
YOLOv4 and is optimized for continuous video streams by
utilizing redundancy to identify the “only” essential frames.
YLLO is a three-stage process that begins with a scene change
detection algorithm and progresses to object detection via
YOLOv4 or any single shot detector. The Simple Online and
Real-time Tracking (SORT) algorithm assign a tracker to each
detected object or multiple objects. YLLO decouples classi-
fication and regression tasks to eliminate redundant objects
between the frames. Additionally, before sending frames to
object detection, for the scene change detection, it generates
Color Difference Histograms (CDH) for edge orientations,
where edge orientations are determined using the Laplacian-
Gaussian edge detection framework [25].

B. Input to RTEC Tool

Fig. 2. Stage 2 Flowchart

In stage 2 of the C-FAR framework, the RTEC tool receives
input as EC predicates representing time-stamped primitive ac-
tivities detected on individual video frames as shown in Fig. 2.
For example, the object’s bounding box coordinates can define
the appearance of a static object or multiple moving objects
in each frame. Additionally, we have the angle/orientation of
the object and the direction in which they are moving.

The primitive events are defined along with their associated
timestamps, which indicate the time-point in which the activity
occurred. The hA predicate establishes this type of input.
For instance, hA(emergencyBreaking(id6, 60) indicates that
an object(id6) engaged in emergency braking at video frame
60. These primitive activities are represented as events in the
EC and we use the inA and tA predicates for expressing the
conditions in which these events initiate and terminate an
anomaly described above.

The tracked people or object’s coordinates are specified as
‘X’ and ‘Y’ pixel positions at each time point. These coor-
dinates are expressed using the hoA predicate, for example,
hoA(coord(id2) = (14, 55), 40) indicates that the coordinates
of object with id2 are (14, 55) at time point (frame number)
40. The hA predicate represents the first and last time points
a person or object is detected, given by “detect/exits”. For
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example, hA(detect(id2), 17) indicates that an object with
the id2 is detected for the first time at time-point (frame
number) 17. Similarly, if an object disappears from a frame,
hA(exits(id2), 560) indicates that the object2 leaves the scene
at time-point (frame number) 560.

C. Formation of Events and Fluents

Anomalies or complex events are represented using EC flu-
ents defined mostly with hoA predicate, which can also com-
pute the associated intervals. For example, hoA(following(id1,
id3) = true, [(0, 40),(340, 380 )] indicates that object1 was
following object3 during the intervals (0, 40) and (340, 380).

A few examples of events defined include, (1) becomesSafe
(v1, v2) that denotes the separation or distance between
vehicle v1 approaching or following vehicle v2 becomes safe,
similarly, (2) becomesUnsafe (v1, v2) that is opposite of the
event becomesSafe, (3) follow (v1, v2) that denote vehicle v1
starts following vehicle v2. Some examples of fluents defined
include, (1) reducedSpeed (v): vehicle v reduces its speed,
(2) laneShift (v): vehicle v is changing a lane as a result of
steering, (3) collision (v1, v2): vehicle v1 has collided with
vehicle v2.

After defining events and fluents, we must define an ini-
tiation and termination map for each defined fluent in the
system, indicating which events initiate and terminate which
fluents. The next step is to specify the relation between fluents
and events in the form of rules. For example, the initiation
and termination map for fluent unsafeSeparation is shown in
Fig. 3. In the rule set, unsafeSeparation, speed and direction,
following and similarDirection are the input events and th
is an temporal predicate indicating numerical threshold of
traffic patterns and in this case it represents the user-specified
distance and speed threshold . The rule set defined states that
unsafeSeparation(v1) is a Boolean fluent, which is invoked
when a speed event is detected for a vehicle v1 and v2 where
v1 is following v2 in the same direction and the distance
between two vehicles is less than a predefined threshold
Dθ, and v1’s speed is greater than v2’s speed. The event
unsafeSeparation(v1) is terminated when the vehicle v1 is not
following v2 and v1’s speed is lesser than v2’s speed and the
distance between two vehicles exceeds Dθ, or when either
the vehicle v1 or vehicle v2 exists from the scene reported
by exits(v1) or exits(v1) event. Similarly, we have defined the
initiation and termination map of other fluents used in the
system.

D. Derived Events

When dynamic dependencies are significant, such as when
modeling accidents in which traffic conditions interact dynam-
ically (e.g., a braking maneuver is executed in response to
danger), developing a system capable of representing dynamic
relationships is necessary. We define the derived events, i.e.,
the events that occur due to the change in state or value of
another fluent and/or the occurrence of another event. These
events indicate when specific actions occur in traffic due
to a combination of particular conditions. They assist us in
modeling the dynamic behavior of accident scenarios and the

effects of introducing new actions.
At each time slot, before invoking the WPM2 solver, we

find relevant rules corresponding to derived events based on
current ongoing events [26]. We identify the rules or relations
R’⊆R that lead to derived events based on the current events,
either directly or indirectly. The dependency is expressed
via a dependency graph G, where the vertices denote the
rules/relations, and the (directed) edges denote the dependency
between them. We then take the transitive closure of G (say
G′) using the Floyd–Warshall algorithm. Thus, in G′ an edge
i→ j denotes that j is directly or indirectly dependent on i.
The rules R’ expressed in CNF are then passed on to a WPM
solver. We use a solver called WPM2 [27], built on top of the
Yices SMT solver [28].

E. Anomaly Detection and Prediction

Given the inputs and the derived events, our system should
be able to detect and predict the anomalies as mentioned
in III-B. For example, to predict if a collision can happen
in the next few slots, we can determine the distance between
two tracked objects and compare the distance with predefined
thresholds. For example, hoA(safeDistance(id1 , id3 , 30 ) =
true, 80 ) states that object1 is “close” to object3 at time 80
and also their distance is at most 30 pixel positions. Further,
we can also compute the validity of fluents given by the
maximal intervals for which two tracked objects are “close”.
For example, hoF(safeDistance(id1, id5) = true, [(20, 30 )]
states that (20, 30 ) is the maximal interval for which the
distance between object1 and object5 is safe. Similarly, we
can find the maximum validity interval for the unsafe distances
between two vehicles. In general, it is not just the distance that
matters but also its increase or decrease in the traveling rate.

Let us consider an example that represents temporal con-
straint relationship between the event becomesUnsafe(v1, v2)
and the fluents distance(v1, v2), speed (v, Sv), acceleration(v,
Av)) and few other fluents that identify a rear-end accident
scenario that can be defined as shown in Fig. 4(a). The event
becomesUnsafe(v1, v2) is a long term activity expressed as
a Boolean event in terms of other primitive activities defined
using hA predicate and based on the spatial information given
by coordinates and orientation of the tracked objects in the
traffic scene. becomesUnsafe is triggered when two vehicles
are following each other from behind, and the distance be-
tween them has exceeded the dclose threshold, and they have a
similar orientation or direction. The calculation of distance and
acceleration values are based on classical kinematic equations
given in [29]. We used constants such as NBD and SBD
to denote normal and speed/emergency braking deceleration,
respectively. Further, we can determine the fluent collision
holds in any given traffic scene, which is defined as shown
in Fig. 4(b).

F. Anomaly Resolution

Following the prediction of an anomaly in stage 2 of the C-
FAR framework, the ε-DDS algorithm is supplied with clauses
used to determine the anomaly. Let V1,..,VJ denote the J
underlying variables that appear in the UNSAT core C ′. Let
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N denotes the set of clauses in the C ′ and η(Ci) the set
of variables in clause Ci. Also, assume that if variable Vj
originally has the value τj , its modified value is denoted as
τ̂j .

Let wi denote the weight of the unsatisfiable clause Ci’s.
The notations V (min)

j and V (max)
j indicate the minimum and

maximum values of the variable Vj . We assume that H denotes
the set of hard clauses in the SAT core (obviously a subset of
N). The goal is then to determine the modified τj’s, denoted
here as τ̂j , by solving the following optimization problem:

min
∑
i∈N
∀j∈η(Ci)g(τ̂j−τj)×wi (1)

s.t. ∀i∈H[Ci(∀j∈η(Ci)τ̂j)= true]] (2)

∀j, V
(min)
j ≤Vj ≤V (max)

j (3)

σ(H)≤
J∑
J=1

I(τ̂j−τj)≤σ(H)+L (4)

The objective function here is the total weighted pertur-
bation, with the function g() indicating the suitable measure
of the magnitude of the perturbation. Since both positive and
negative differences should be counted, the simplest choice
is g(x)= |x|. A more common choice, as used in [26] is
g(x)=x2. The latter, however, discourages larger perturba-
tions and thus would tend to spread the perturbation across
multiple variables. This may be fine for an automated driving
system but less desirable for human drivers who would do
better at managing only 1 or 2 variables.

The first constraint says that all the hard clauses become
true following the perturbation. It is assumed that for each
variable j that is not perturbed, τ̂j = τj . In the last constraint,
L is a small number (say, 1 or 2, in most cases) and represents
the number of soft clauses that can be perturbed, and σ(H) is
the number of distinct underlying variables in the hard clauses.
The last equation ensures that we perturb all variables required
to satisfy hard clauses, but very few others. The function I is
the index function (defined as 0 if the argument is zero, else
1).

Situation based ε-DDS: Consider an objective function
f(x) of input vector x, along with a set of constraints
φi(x),i=1,2,...,K. Let σi(x)∈ [0..Ci] denote a cost measure
for constraint φi(x) that indicates to what extent the constraint
is violated for input vector x. By definition, if the constraint
is satisfied, then σi(x)= 0. Let σ(x)=

∑K
i=1σi(x)/

∑K
i=1Ci

denote the overall normalized cost of violating the constraints,
which has the range [0..1]. Now consider an existing solution
x1, and new proposed solution x2. The ε comparison between
them defines a specific way of determining if x2 is better
than x1 by considering both the objective function and the
constraints. In particular, suppose that the objective is to
minimize the objective function. Then the “epsilon less than”
relationship between x2 and x1, denoted x2<ε x1 is defined
as follows: [24], [30]:

x2<ε x1 =⇔


f(x2)<f(x1), if φ(x2), φ(x1)<ε
f(x2)<f(x1), if φ(x2)=φ(x1)

φ(x2)<φ(x1), otherwise.
(5)

The intuition behind this comparison is that, if the solutions
x1 and x2 are feasible, slightly feasible (as determined by ε),
or having the same sum of constraint violations (the number
of unsatisfied constraints in our case), then they are compared
using their objective values f(x1) and f(x2). Otherwise, if
both x1 and x2 are infeasible, they are compared based on
their sum of constraint violations.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate our C-FAR framework on four
real-world datasets, including our collected TU-DAT dataset
and three public datasets. i.e., Dashcam Accident Dataset
(DAD) [10], Car Accident Detection and Prediction (CADP)
dataset [31] and NVIDIA AI City Challenge 2021 [32]. The
characteristics of the datasets are shown in Table II. Columns
2-3 in the table list the size of the dataset in terms of number
of videos and number of frames/video. The last four columns
indicate if the dataset has the following features: (a) images
captured with cameras of varying resolutions, (b) varying
distance between camera and the vehicle of interest, (c)
different weather conditions (foggy, sunny, snowy, day/night,
etc.), and (d) whether fine-grain (FG) and medium-grain (MG)
activities are represented (see section II-B). The model is
validated through a comparison of state-of-the-art methods.
The experiments were performed on a computer with Intel(R)
Core(TM) i7-7700 CPU @ 3.60 GHz, 32 GB RAM, and 1 TB
SSD and SWI-Prolog 8.2.3.

TABLE II
CHARACTERISTICS OF DATASETS USED

Total No of Videos with variations in
Dataset No of frames Camera View Weather Activity

Videos /Video Resolu. Depth Cond. FG/MG
DAD 1730 100 7 7 7 3/7
CADP 1416 366 3 3 3 3/7
TU-DAT 280 960 3 3 3 3/3
AI-City 250 2400 3 3 7 3/7

A. TU-DAT Data Collection

TU-DAT Dataset: In this paper, we collect
a challenging dataset titled Temple University -
Data on Anomalous Traffic (TU-DAT) in order to
improve the accuracy of accident detection in ITS.

TABLE III
STATISTICS OF TU-DAT DATASET

Conditions #frames
Day light 9796
Night/low light 1487
Foggy 445
Rainy 128
Snowy 274
Camera too far 211
Accident Types
Weaving thru traffic 2417
X-section accidents 6566
Night/ Low light 1487
Tailgating 1452
Highway Accidents 1254
Rear-End Accidents 1215
Pedestrian accidents 447
Driving Maneuvers. 305

TU-DAT, in particular, con-
tains a diverse set of ac-
cident types, weather con-
ditions, and videos col-
lected in challenging en-
vironments, enhancing the
self-adaptability of accident
detection methods in a vari-
ety of traffic situations. We
developed a crawler writ-
ten in Python to scrape the
accident videos from news
reporting and documentary
websites. We also searched
YouTube videos for each
type of anomaly using text search queries (with slight vari-
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inA(unsafeSeparation(v1 , v2, dclose), t← hA(distance (v1, v2, dclose), t) ∧ th(dclose, < Dθ) ∧ hA(following(v1, v2) = true, t) ∧ hA(speed(v1,
Sv1), t) ∧ hA(speed(v2, Sv2), t) ∧ th(Sv1, Sv2), Sv1 > Sv2) ∧ hA(similarDirection(v1, v2) = true, t).

tA(unsafeSeparation(v1 , v2, dclose), t← hA(distance (v1, v2, dclose), t) ∧ th(dclose, ≥Dθ) ∧ hA(¬following(v1, v2) = true, t) ∧ hA(speed(v1,
Sv1), t) ∧ hA(speed(v2, Sv2), t) ∧ th(Sv1, Sv2), Sv1 < Sv2) ∧ hA(¬similarDirection(v1, v2) = true, t).

tA((unsafeSeparation(v1 , v2, dclose), t) ← hA(exits(v1), T) , tA((unsafeSeparation(v1 , v2, dclose), t) ← hA(exits(v2), T).

Fig. 3. Initiation and Termination of fluent unsafeSeparation

(a) Relationship between events and fluents in a rear-end accident scenario
inA(becomesUnsafe(v1, v2), t) ← hoA(following(v1, v2), t) ∧ hoA(speed(v1, Sv1)), t) ∧ hoA(speed(v2, Sv2)), t) ∧ hoA(unsafeSeparation(v1,
v2, dclose), t) ∧ th(v1, v2, Sv1, Sv1, Sθ) ∧ (Sv1 > Sθ) ∧ (Sv2 > Sθ) ∧ hoA(similarDirection(v1, v2) = true, t) ∧ hoA(acceleration(v2,
Av2, t) ∧ δ ≤ ( Av1−Av2)2 / ( -2 * (SPB - Av2)).

inA(becomesUnsafe(v1, v2), t) ← hA(moveAway(v1, v2), t) ∧ hoA(¬unsafeSeparation(v1, v2, dclose), t.

(b) Definition of Fluent Collision
hoA(collision(v1, v2), t) ← hoA(following(v1, v2), t) ∧ hoA(becomesUnsafe(v1, v2), t).

Fig. 4. RTEC Definitions

ations, e.g., “unexpected object on the road”, “pedestrian
accident,” etc.). To ensure that our method applies to roadside
edge devices, we use only footage and images from traffic
CCTV cameras. We have collected around 210 videos varying
around 24-30 FPS of road accidents through these steps with
17255 accident keyframes and 505245 regular frames. The
details of our dataset is shown in Table III.

Additionally, as an alternative to real-world videos, various
AI-powered game simulations feature realistic graphics and
intelligent car bots that may aid traffic analysis and accident
detection. The authors in [33] proposed a 3D CNN-based
model for detecting accidents, which they validated using
YouTube and Grand Theft Auto (GTA) videos. Their model
performs 10% better when trained on GTA game videos
than when trained on YouTube videos. Given the difficulty
of obtaining real-world traffic videos to analyze aggressive
driving, we adapted the BeamNG.drive [34] game simulator to
generate road traffic video data to simulate aggressive driving
behaviors such as speeding, tailgating, weaving in and out
of traffic, and running red lights. We gathered approximately
40 videos of positive examples and 25 videos of negative
examples.

We utilize Computer Vision Annotation Tool (CVAT) [35]
to annotate the video frames. For temporal annotations, the
anomalous situation time is labeled at the time when an
anomaly happens. The TU-DAT dataset is made available for
research use and can be found in [36]. Fig. 5(a)-(b) illustrate a
crash scenario at an intersection, where the car and van in (a)
have a safe separation, but the car is traveling as fast as the
van, resulting in the crash situation depicted in (b). Similarly,
Fig. 5(c)-(d) illustrate a collision in which a vehicle collides
with an electric pole on the road as a result of the vehicle’s
abrupt steering.

B. Evaluation Metric

We evaluate our proposed model based on the correctness
of anticipating a future accident or anomaly. Given an input,
our method calculates the confidence of anomaly at every time
slot using metrics like object distance or orientation which are
defined in terms of fluents or events. When the confidence is
greater than or equal to a threshold δ at time-slot t, the C-FAR
framework affirms that an anomaly will occur in the future.

(a) (b)

(c) (d)

Fig. 5. (a)-(d) Some frames of TU-DAT dataset of accident scenarios.

If the input video contains the footage of an accident, this is
a True Positive (TP) anticipatory signal. Hence the accident
is correctly anticipated at time-slot t, which is t′−t time-slots
before it occurs at t′. This could be a False Positive (FP)
anticipation if the input video is not an accident video. If,
on the other hand, the confidence levels across multiple time-
slots are less than the δ threshold, the method asserts that no
accident will occur in the future. If the input video is of an
accident, it is a False Negative (FN) prediction; otherwise, it
is a True Negative (TN) prediction.

Given these, we can compute the estimates of 3 key per-
formance metrics for the approach: accuracy, precision, and
recall, defined in the usual way:

Accuracy =
TP+TN

TP+FP+TN+FN
(6)

Precision =
TP

TP+FP
, Recall =

TP

TP+FN
(7)

Of these three metrics, the most important one is Recall since it
relates to the fraction of actual accidents (anomalies) predicted
by our mechanism as well. The precision is not quite as crucial
since it is okay to have some false alerts. Nevertheless, the
purpose of the proposed mechanisms is to improve precision
over what is possible from the ADAS capabilities in individual
vehicles.

C. Results and discussion

Fig. 6 illustrates how our C-FAR framework can be used
to evaluate a variety of accident scenarios, including rear-
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(a) (b)
Fig. 6. (a) Initial Traffic Situation (b) Accident Situation.

end collisions, intersection collisions, and a car colliding
with a pedestrian. The scenario involves six vehicles and a
pedestrian. The sequence of events is as follows. At time t0,
the vehicles v3, v4, and v5 follow each other at a safe distance,
and at t1, v5 suffers a breakdown, executes a pullover, and
begins emergency braking. After a few time slots, vehicle v4
changes the lane, v3, unaware of this sudden driving maneuver
executed by v4, collides with vehicle v5. Similarly, v1 and v2
are at a safe distance and traveling perpendicular to each other
when they collide after a few time points. Furthermore, v6
traveling faster than the posted speed limit hits a pedestrian P1
crossing the street. We have represented collision as a fluent
that holds from the time it occurs, and thus we can query
this fluent at any time moment. The following Prolog syntax
illustrates an example query about a collision between vehicles
in a traffic scene that is evaluated to be true:

?- hoA(collision(v3,v5),12). yes

In addition to that, we can also determine if certain events
occur and whether certain fluents persist at specific time
points. For example, we can perform query computations to
determine the value of the fluents at any point in time, such as
the vehicle’s velocity, and calculate the distance between any
vehicles while deciding whether they are in a safe separation
from one another or not. Additionally, we can also determine
whether or not an event occurred based on the validity of the
fluent initiated by the event; for example, to determine whether
or not an anomaly such as a rear or pedestrian accident is
occurring. Some examples of queries that can be executed are
given below:

?- hoA(distance(v3,v4,D2). D2=21? yes
?- hoA(intersectCollision(v1,v2),22). yes
?- hoA(safeDistance(v3,v5,75). no
?- hoA(becomesUnsafe(v3,v5,78). yes
?- hoA(pedestrianAccident(p1,v6),42). yes
?- hoA(stop(v5), Stop v5). Stop v5 = 84? yes

The above example of queries shows the analyses of the
effect of various parameters on the evolution of the traffic
scenario, such as estimating the distance between vehicles v3
and v4 at any point in time shown in Fig. 6. Analyses of
certain parameters are essential in determining when and how
to act to avoid accidents. We could also determine the moment
when vehicle v5 has stopped. Additionally, we demonstrated
various analyses performed on the proposed system, including
estimating safe and unsafe separation between vehicles v3
and v5, estimating an impending collision between vehicles
v1 and v2 at the intersection, and estimating a collision with
the pedestrian. Similarly, we can determine whether a car is
following another, the vehicle’s velocity at any point in time,
etc.

Accuracy and Precision-Recall Results: Fig. 7(a) and 7(b)

(a) CADP-Dataset (b) TU-DAT Dataset

Fig. 7. Accuracy, Precision-Recall values for both Dataset.

shows the Accuracy and Precision-Recall values of the pro-
posed system evaluated on the CADP dataset and on our own
dataset TU-DAT respectively measured using the evaluation
metric explained in section V-B. The Precision and Recall
values are represented on the left Y-axis, and the percentage
accuracy is represented by bars with a scale on the right Y-axis.
We conduct experiments with various confidence thresholds
ranging from 0.7 to 0.95. It can be seen, the confidence
threshold (δ) of 0.8 results in a higher accuracy of around 90%
for both datasets, with precision and recall values of 96% and
92%, respectively. The performance of our proposed system
for the other two datasets, DAD and AI CITY Challenge, have
an accuracy of around 90%, with precision-recall values of
95% and 91%, respectively. When the confidence threshold is
set to be greater than or less than 0.8, an increase in the number
of FPs is observed. Since false negatives are more problematic
than false positives in this application, a higher recall is more
important than a higher precision, and we observe that from
the results at all confidence levels.

(a) Comparison of ε-DDS &
Normal-DDS

(b) Square vs Absolute in ε-DDS
objective function

Fig. 8. Performance of Situation based ε−DDS.

Situation based ε-DDS: To assess our Situation-based
DDS’s performance in resolving anomalies, we keep track of
perturbable clauses in each accident scenario across all four
datasets, including our own TU-DAT. As a result, we have
551 perturbable clauses in accident videos from the DAD
dataset, 394 clauses in CADP, 225 clauses in our TU-DAT
dataset, and 161 perturbable cases in accident videos from the
NVIDIA AI City dataset. Fig. 8 (a) shows the results of ε-
DDS that are averaged over all the four cases as described
above. The x-axis indicates the number of iterations needed
by combinatorial optimization. It is limited to a maximum of
250, whereas the y-axis shows the percentage of cases where
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the algorithm could resolve the anomalies. It can be seen that
our algorithm, powered by knowledge based on situations or
ongoing events, can resolve the anomalies in 100% of the cases
in about 310 iterations. In contrast, the normal-DDS can fix
only 57% out of the test cases at 250 iterations without any
knowledge about the situations or ongoing events.

Fig. 8 (b) shows the comparison between the number of
variables perturbed for g(x)= |x| and g(x)=x2 functions as
described in section IV-F. The x-axis representing the datasets
and y-axis represents the percentage of variables perturbed
for every dataset. As expected, the first form requires fewer
perturbations and requires 320 maximum iterations.

TABLE IV
TABLE: NUMBER OF EVENTS, FLUENTS DEFINED AND RTM FOR VARIOUS

ACCIDENT SCENARIOS

Type of Anomaly #Events #Fluents RTM (s)
Pedestrian Accidents 25 17 2.84
Intersection Accidents 37 19 3.42
Rear-end Accidents 41 21 3.85
Front-end Accidents 39 23 3.21
Collision with Static Objects 26 14 4.18
Driving Maneuvers 27 15 3.05
Aggressive Driving 31 18 3.72

Model’s performance in terms of total execution time:
Additionally, we conducted experiments to see how the C-
FAR framework’s performance varies as the number of events
increases. The model receives the events as input, and the
time it takes to predict, detect and resolve an anomaly is
recorded. These values are compared between number of
variables perturbed for g(x)= |x| and g(x)=x2 functions as
described in section IV-F. It can be seen from Fig. 9 (a)
that the time grows slowly at first and then saturates to a
linear trend after about 140 events. As a result of the analysis,
we also found that, on average, our method can predict an
anomaly 4.05 seconds ahead, called resolution margin time.
Table IV lists the RTM under various accident scenarios. It
is evident that the spatio-temporal reasoning system can be
easily extended to conduct various investigations of accident
scenarios, as the relationship between events and actions can
be easily added or modified. Note that 4.05 secs is adequate
time for humans to react, and indeed so for the (automated)
vehicular safety system (VSS). In fact, the extra time afforded
by the proposed approach can be exploited by VSS in two
ways: (a) Merge this road-side infrastructure based intelligence
with the locally observed situation and make an improved
control decision, and (b) apply the desired control gradually
and thus more smoothly and with less chance of side effects.

Comparison with state-of-art methods: We compare our
proposed model to three other existing accident detection
and prediction models proposed in [10], [31], [37], and the
performance results are shown in Fig. 9(b)-(c). In [38], the
authors proposed a three-stage framework for auto accident
detection in video. The first stage employs a car detection
algorithm based on the YOLOv3 deep convolutional neural
network; the second stage is a tracking algorithm based on
the discriminative correlation filter method, and the final stage
employs the Violent Flows (ViF) descriptor to highlight the
magnitude changes in the motion vectors that are computed

using an optical flow algorithm to detect car crashes. [37] is
a framework for detecting anomalies, a 3D neural network
architecture based on the EfficientNet 2D classifier for de-
tecting aggressive driving, specifically car drifting. The model
proposed in [10] is a Dynamic-Spatial-Attention (DSA) based
model that uses RNN along with Long Short-Term Memory
(LSTM) cells to model the long-term dependencies of all cues
to anticipate accidents in dash-cam videos.

We compute the Average Precision (AP) from the sequence
of precision and recall pairs, which is used to show the
overall accuracy of our C-FAR framework in comparison with
other models. From Fig.9 (b) where the x-axis representing
the datasets and y-axis representing RTM in seconds, we
can observe that our C-FAR framework on the DAD dataset
achieves the best AP and best value of Resolution Time
Margin (RTM) on the AI city Challenge dataset as shown
in Fig.9 (c) where x-axis representing the datasets and y-
axis representing AP, which means the model anticipates on
average 3.42 seconds earlier before an accident happens while
keeping the competitive performance of AP value at 89.27%
compared with other three methods. The major disadvantage
of the method that combines YOLOv3 and SVM is that the
SVM requires several parameters to be set correctly to classify
a car crash. Additionally, because the ViF descriptor cannot
capture potentially significant orientation changes, the model
seems unable to detect multiple objects in a single frame due
to interference. For using the DSA+LSTM model, we use the
candidate objects and the corresponding CNN features for
all the videos in other datasets for a fair comparison. This
model requires a significant amount of time and resources
to train and prepare for real-world applications. Thus, the
DSA+LSTM model becomes highly inefficient from a hard-
ware perspective. To compare our C-FAR framework to the
DriftNet architecture, we extracted features and captured the
pattern of sliding vehicles using the pretrained EfficientNet3D-
B0 model. Pre-training on one or more larger-scale datasets is
required when using the DriftNet architecture as a classifier to
classify anomalies. Also, the work in [39] has shown that 3D
convolutional networks do not learn efficient representations
of videos. The authors have only captured the car drifting
behavior in this work. In contrast, C-FAR captures some more
aggressive driving behaviors such as speeding, weaving in and
out of traffic, and so on while maintaining the highest AP
compared to the DriftNet model. Additionally, we compare
our C-FAR framework to the DriftNet dataset and observe that
C-FAR achieves an accuracy of 95% compared to the DriftNet
model’s accuracy of 92.5%.

VI. CONCLUSIONS

In this paper, we explore a flexible approach for detecting
and predicting anomalies in intelligent transportation systems.
The approach uses deep learning to monitor simple activities
and situations and then uses a spatio-temporal event-calculus
based composability framework to deduce the presence of
anomalies. The techniques are evaluated using a prototype
system that attempts to predict fine-grain (moving vehicle
accident-related) and medium-grain (aggressive driving relate)
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(a) (b) (c)
Fig. 9. (a) Total execution time required by C-FAR framework on TU DAT, (b) and (c): Performance results showing RTM and AP Values for all Datasets

anomalies. For the fine-grain anomalies, which are the most
challenging, our scheme can predict anomalies with over
90% accuracy at 80% confidence level (or 65% accuracy
at 90% confidence level) approximately 4 seconds before
the potential accident. Furthermore, the recall rate of the
mechanism remains relatively high throughout (about 85% at
90% confidence). These mechanisms can be adapted to many
other cyber-physical environments such as hospitals, senior
care centers, factory environments, etc., which we plan to
explore in the future.
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