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A Remedy for Heterogeneous Data: Clustered
Federated Learning with Gradient Trajectory

Abstract—Federated Learning (FL) has recently attracted a
lot of attention due to its ability to train a machine learning
model using data from multiple clients without divulging their
privacy. However, the training data across clients can be very
heterogeneous in terms of quality, amount, occurrences of specific
features, etc. In this paper, we demonstrate how the server
can observe data heterogeneity by mining gradient trajectories
that the clients compute from a two-dimensional mapping of
high-dimensional gradients computed by each client from its
bottom layer. Based on these ideas, we propose a new Clustered
Federated Learning method called CFLGT, which dynamically
clusters clients together based on the gradient trajectories. We
analyze CFLGT both theoretically and experimentally to show
that it overcomes several drawbacks of mainstream Clustered
Federated Learning methods and outperforms other baselines.

Index Terms—Federated Learning, Clustering, Heterogeneous
Data, Distributed System

I. INTRODUCTION

THe key driver of sophisticated deep learning is the
availability of vast amounts of data; however, the data is

often produced at many different locations and typically owned
by different parties. It is generally not possible to collect all the
required data in a central place for deep learning both because
of the difficulty of sending and centrally storing the data and
because the parties that generate them are unlikely to share it
freely [1]. Federated Learning (FL) was proposed to solve this
problem [2], where clients in FL keep their data locally. In the
typical federated learning framework (FedAvg) [2], the server
broadcasts a global model to several clients, and each client
trains it with their data and uploads the model to the server.
After receiving all updated models, the server aggregates them
into a new global model for the next round of training. The
server can thus utilize the data owned by different clients for
training without the clients having to disclose the data.

But FL still faces a host of challenges. One is training with
heterogeneous data [3] since the data from different clients
could have varying quality, size, features, etc. This can cause
several problems in FL, such as bad model performance [4],
[5], slow or unstable convergence in training [6], and so on.
Several methods have been proposed to reduce the harmful ef-
fects from heterogeneous data. References [7]–[9] optimize FL
with heterogeneous data via meta-learning, which empowers
the client model to learn new data quickly. [10]–[13] propose
personalized federated learning, where clients adjust the global
model to get a unique model suitable for local data. The
contribution of different level layers has also been analyzed re-
cently [12], [14]–[16]. In addition, clustering-based federated
learning (CFL) is implemented to mitigate the negative effects
of heterogeneous data. The server collects information from all
active clients in the FL system and iteratively (or recursively)

assigns clients into clusters, where every client in the same
cluster has similar data distribution. Thus the non-IID data
among all clients can be transformed into IID data in every
client cluster, which diminishes the negative impacts from the
data distribution. Despite the benefit, several drawbacks are
associated with the CFL: 1) how to estimate the number of
clusters, 2) how do we ensure that the data transfer bandwidth
between clients and the server is well constrained, 3) how
do we ensure that the computing requirements of the client-
server coordination are low, and 4) how do we ensure that the
additional data exchange does not leak client’s data.

To address these challenges in CFL, our exploration focused
on extracting information from high-level layers on the client
side and applying it as the input of the server for client cluster-
ing. Recent research in FL with non-IID data has highlighted
the significance of high-level layers. It explicitly or implicitly
emphasizes leveraging bottom-layer characteristics to enhance
FL performance with heterogeneous data. Inspired by this
research, our approach involves extracting information from
high-level layers, transmitting it to the server, and optimizing
the CFL from an optimal global perspective.

In our work, the gradient information of the bottom layer in
the client-side model is the input of clustered-based Federated
Learning. We call it a gradient trajectory, an innovative two-
dimensional vector based on gradient decomposition. The
gradient trajectory contains client data distribution information
with no privacy concerns and huge computation costs. Thus
the server can achieve accurate client clustering efficiently.
Specifically, focused on a classification task with softmax
layer and cross-entropy loss function, inspired by [15], we
decompose the bottom layer gradient into two vectors, pulling
force and pushing force. We show that the pulling forces
and pushing forces are directly related to dataset distribution.
Then we extract distribution information in these two forces
to get the gradient trajectory of clients. The trajectories are
composed of points connected in two dimensions, produced by
two forces [15]. With clients’ privacy guaranteed, we explain
why the server can mitigate heterogeneity in the system with
gradient trajectories.

We thus propose a novel Clustered Federated Learning
framework called Clustered Federated Learning with Gradient
Trajectory (CFLGT) to solve the heterogeneous data problem
in FL, which clusters clients accurately and swiftly. The main
contributions can be summarized as follows:

• We deep dive into the underlying gradients and present
the first gradient trajectory for representing data hetero-
geneity.

• We theoretically prove the mathematical meaning of the
gradient trajectory and explore its potential as a clustering
object.
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• Based on the study of gradient trajectories, we propose
the new FL algorithm, and the following experiments
show that our method mitigates the negative effects of the
above drawbacks achieves excellent performance with a
small cost, and is practical in real-world tasks.

The rest of the paper is organized as follows. Section II
introduces recent research on FL with heterogeneous data and
clustered federated learning. Section III goes through basic
concepts in Federated Learning, illustrates how the gradient
trajectory is created, and then observes the data heterogene-
ity through the gradient trajectories of clients. Section IV
describes the proposed algorithm framework, a new CFL
based on gradient trajectories, and the mathematical proof
of its enhancement of the new framework. In Section V,
the baselines and experimental results are presented. Finally,
Section VI concludes the whole paper and proposes future
development direction.

II. RELATED WORK

A. FL with heterogeneous Data

Researchers have proposed several methods to handle the
heterogeneity problem in FL. Li et al. proposed the Fed-
Prox [17], which adds a regularization term to the loss function
to prevent the locally trained model from deviating too much
from the global model. The studies in [7]–[9] optimize the
performance of FL with heterogeneous data by leveraging
the fast learning properties of meta-learning for new tasks.
Researchers in [10]–[12] proposed personalized federated
learning to optimize the performance of federated learning
by training personalized models for different clients. Also,
several researchers have recently investigated the impacts of
high-level layers on FL with heterogeneous data. Sun et
al. [12] demonstrated that aggregating too many high-level
layers will hurt FL performance with heterogeneous data.
The experiments in [14] exhibit that the highest disparity
occurs between bottom layers of neural networks in FL with
heterogeneous data. Li et al. [15] accounted for the influence
on the bottom layer in a label-shift condition while clients in
FedRep [16] train and keep their high-level layers locally, thus
protecting their model from the pollution of heterogeneous
data. These works show that high-level layers of a neural
network are more sensitive to heterogeneous data in FL than
other layers and affect greater model performance because of
the closer contact with common features [18].

B. Clustered Federated Learning

Clustered Federated Learning (CFL) [19] techniques can
control the aggregation of clients’ models by clustering clients
into groups. However, the existing works still face quite a few
problems.

1) Data privacy issue: In the CFL algorithms [19]–[21],
clients need to upload the gradient or model to the server.
If attackers capture the information, they can complete
an inference attack. Zhu et al. [22] demonstrated the
possibility of obtaining raw data by intercepting the
uploaded gradients and successfully implementing the

data-privacy-level attack. In addition, Melis et al. [23]
proposed an attack on the client’s data privacy by ob-
taining the model update. This attribute inference attack
uses the updated model to infer sensitive attributes of the
training data. As a result, uploading a model or gradient
for clustering is dangerous to clients in the FL system.

2) The number of clusters needs to be determined
in advance: The popular clustered federated learning
algorithms need the number of clusters in advance as the
algorithm’s input. However, it is difficult to determine
a reasonable number of clusters on the server side in a
real scenario, considering the huge scale of participating
clients and data privacy constraints. Additionally, a
wrong cluster number may damage the FL performance,
which is shown in our experiments.

3) Ignoring the limitation of bandwidth and client’s
computing power: When the number of clusters is large
and the model structure is complex, IFCA [24] needs
to broadcast all clusters’ global models to clients in
each round, which requires considerable pressure on the
bandwidth and client’s computing resources. Moreover,
Gholizadeh et al. [25] proposed an algorithm that uses
model hyper-parameters for clustering. The client uses
grid search to find the optimal hyper-parameters (in-
cluding the number of neurons and epochs) and uploads
them to the server side. When using large models, grid
search will consume computational resources greatly,
even exceeding the client’s limitation.

III. FORMULATION OF GRADIENT TRAJECTORY

In this section, we show how a server explores the bottom
layer’s gradient information. First, we introduce the basic
concepts of Federated Learning (FL) and properties of the
bottom layer with softmax (classifier). Then we transform the
gradient into gradient trajectories in subsection III-B. Thus,
the server can receive the trajectories from clients with privacy
guarantees and observe the data heterogeneity in the FL system
by mining trajectories simultaneously.

A. Basic concepts

Basic Concepts of Federated Learning: In a typical FL
system with a classification task, there is one machine learning
agent in the ”server” and M machine learning agents in clients.
The server broadcasts global model h0 to the participating
clients and receives clients’ model hm(m ∈ [1,M ]) from the
clients in each round. Each client owns a dataset Dm contain-
ing Nm samples for local training, denoted as (xm,i, ym,i)

Nm

i=1,
where i indicates a sample in Dm. In the t-th round of learning,
the server randomly selects a subset of clients Ut among M
clients and broadcasts the current global model ht−1

g to them.
Once receiving the ht−1

g , each client m in Ut updates it by
performing local training with data Dm with the objective:

min
ht
m

E(x,y)∼Dm
[F (h; x, y)] , (1)

where F indicates the loss function. After local training, the
client uploads its new model ht

m to the server. When all models
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are received, the server aggregates them together as a new
global model ht

g as follows,

ht
g =

1∑
mϵUt |Dm|

∑
(mϵUt)

|Dm|ht
m. (2)

Properties of Softmax Layer: Like [14], [15], we decom-
pose a neural network into a feature extractor and classifier.
The classifier represents the bottom layers with weights in a
network, and the rest of the layers are feature extractors. After
the i-th sample enters the neural network, the feature extractor
outputs the extracted feature vector, denoted as vi ∈ Rd. For a
C-classes classification task, the weights in the classifier can
be written as W = {wc}Cc=1 ∈ Rd×C (the bias in the classifier
is omitted). Then the classifier receives the vi and outputs the
probability vector of the i-th sample by P = Softmax(WT vi).
Specifically, the probability that the i-th sample belongs to the
c-th class can be written as:

Pi,c =
exp(wT

c vi)∑C
j=1 exp(w

T
j vi)

. (3)

As cross-entropy loss is implemented, the loss of client m
is denoted as

Lm =

|Dm|∑
i=1

C∑
c=1

I{yi = c} log(Pi,c), (4)

where I{·} is the indicator function. The gradient of c-th
weights is calculated as

gwc
= −

|Dm|∑
i=1

(I{yi = c} − Pi,c)vi, (5)

which equals to

gwc
= −

|Dm|∑
i=1,yi=c

(1− Pi,c)vi +
|Dm|∑

i=1,yi ̸=c

(Pi,c)vi. (6)

Borrowing from previous works [15], [26]–[28], we call
the first term as pulling force Z1 =

∑|Dm|
i=1,yi=c(1 − Pi,c)vi,

consisting of extracted feature from positive samples (yi = c).
For the second term, which consists of extracted features
from negative samples (yi ̸= c), we call it pushing force
Z2 =

∑|Dm|
i=1,yi ̸=c(Pi,c)vi. An example of this decomposition is

shown in Fig. 1. In summary, the gradient of the softmax layer
can be divided into pulling force and pushing force, which has
a practical meaning in mathematics.

B. From Gradient to Trajectory

In a FL system with heterogeneous data, obtaining the
distribution of clients’ datasets is beneficial to optimize the
FL system. However, uploading class statistics of the client
dataset may cause client-level label leakage [29], thus it is
not wise for the client to send dataset statistics to the server.
Thanks to the mechanism of FL, every client who receives the
same global model in each round can compute its pulling force
and pushing force by Eq. (6) on local data and then upload
them. In this way, the server can be aware of the system’s

Fig. 1. Classifier Weights Gradient Composition. In a c-th classes classifi-
cation task, the gradient of each weight in the classifier can be divided into
pulling force and pushing force by data labeled as c and labeled not as c.

Fig. 2. The computation of Z′j
i . The figure shows a toy example of Z′j

1
formation. The bottom layer is shaped as d× C, thus pushing force Z1 has
the same shape. Z1 has C vectors as zji , which contains d values. For every
zji , we average it to get Z′j

i .

heterogeneity by analyzing the values of pulling force and
pushing force.

Yet the strategy poses a huge risk of a data privacy breach.
Note that an attacker can restore the gradient of the bottom
layer by simply combining pulling force with pushing force.
As a result, attacks on data privacy in [30], [31] can be
implemented by capturing the pulling force and pushing force.

Therefore, we propose a method to transform the pulling
force and pushing force into a gradient trajectory, uploaded
to a server with privacy protection. Gradient trajectory is a
computed projection of pulling force and pushing force into a
two-dimensional space.

To be specific, after receiving the global model, the client
computes pushing forces Z1 and pulling forces Z2 by Eq. (7).

(Z1,Z2) =
([

z11, z21, · · · , zC1
]
,
[
z12, z22, · · · , zC2

])
, (7)

where C represents the number of classes in the task, and
[zji ], i ∈ [1, 2], j ∈ [1, · · · , C] is a vector shaped as [d, 1],
where d is the shape of classifier input (also is the output
of feature extractor). Then we compute [Z′j

1 ] and [Z′j
2 ], j ∈

[1, · · · , C] by averaging corresponding vector (zj1 or zj2) in
the force. Fig. 2 displays an example. With this method,
every vector in Z1 and Z2 is averaged. Lastly, [Z′j

1 ] and [Z′j
2 ]

are sequentially grouped as (Z′
1,Z′

2), which constitutes the
gradient trajectory by Eq. (8).
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Fig. 3. The formation of gradient trajectory. In a 10-th classes classification
task, a client calculates its pulling force and pushing force, gets Z′

1 and Z′
2,

and plots the trajectory in a two-dimensional space, where x-axis is for Z′
1

and y-axis is for Z′
2.

Z′
1 =

[
Z′1
1 ,Z′2

1 , · · · ,Z′C
1

]T
=

[
avg(z11), · · · , avg(zC1 )

]T
,

Z′
2 =

[
Z′1
2 ,Z′2

2 , · · · ,Z′C
2

]T
=

[
avg(z12), · · · , avg(zC2 )

]T
.

(8)

Because of the above transformation, Z′
1 and Z′

2 inherit
mathematical meaning from Z1 and Z2, that is the norm of
these two high dimensional vectors. Note that [zji ] ≥ 0 because
Pi,c, (1 − Pi,c) ≥ 0 and vi is the output of a activation (e.g.
sigmoid, relu), which cannot be negative value. Therefore, [Z′j

i ]
equal to ratio between L1 norm of [zji ] and their size. Because
the size is constant, decided by the model in the FL system.
We can see that Z′

1 and Z′
2 composed of [Z′j

i ], are considered as
the deformation of L1 paradigm, which represents the values
of Z1 and Z2. In this way, our transform method passes the
mathematical significance of pulling force and pushing force
to Z′

1 and Z′
2.

To display the gradient trajectory in the plane, a client puts
Z′
1 and Z′

2 into the two-dimensional space, gets C points, and
then gets its gradient trajectory by connecting C points in a
certain order, which given by the server. The order is randomly
computed by the server and applied to all clients’ Z′

1 and Z′
2

for trajectory visualization. Fig. 3 displays a gradient trajectory
of a client in the FL system.

C. Data Heterogeneity Observation by Gradient Trajectory

In this part, we set up an FL system based on FedAvg [1]
to illustrate the analysis of data heterogeneity with gradient
trajectories from clients. During training rounds, all clients in
the system receive a new global model, compute the pulling
force and pushing force, and upload their own gradient trajec-
tories. From the server’s perspective, the data heterogeneity
in the FL system has become gradient trajectories from all
clients. To gain a deep insight into data heterogeneity, the
server can observe the gradient trajectories by qualitative and
quantitative analysis. For better comparison, we set up two
data distributions in the system, IID data and heterogeneous
data.

Qualitative Analysis: The server collects all gradient trajec-
tories and visualizes them to observe data heterogeneity. As
the left chart in Fig. 4 shows, all trajectories in the system with
IID data have the same shape, meaning that data distribution
across clients is the same too. In the right chart, there are
clear distinctions between many trajectories. The trajectories

Fig. 4. Gradient Trajectories of all Clients in an FL System. The trajectories
in (a) are from IID data and trajectories in (b) are from heterogeneous data.

in the red circle have a clear difference from the trajectories
in the green square, reflecting the diversity across the clients’
dataset. Therefore, the trajectory visualization provides a clear
picture of the degree of heterogeneity for the server.

Quantitative analysis: In addition to observing heterogene-
ity at the visualization level, the server also needs specific
values to evaluate data heterogeneity. Here server computes
the coefficient of variation cv [32] of Z′

1 and Z′
2 to evaluate

heterogeneity in a FL system. The cv is defined as the ratio of
the standard deviation σ to the mean µ. The larger it is, the
deviation of data is. It shows that for trajectories in Fig. 4(a),
the cv of the x-axis and y-axis are 0.407 and 0.408. For
trajectories in Fig. 4(b), the cv of the x-axis and y-axis are
0.881 and 1.397. The result implies that the coordinates in
the right plot in Fig. 4 are more discrete and the points of the
trajectory are more sparsely distributed. Therefore, cv could
assist the server in the FL system in calculating the degree of
heterogeneity in the FL system.

IV. METHOD

A. Motivation

Though the server can observe heterogeneity with gradient
trajectories, it still needs a method that utilizes the information
in gradient trajectories to optimize the FL system. Suppose
that a server in an FL system with label distribution shift [33]
knows roughly the dataset distribution among clients, so it can
aggregate clients with similar dataset distribution to improve
FL performance. Clustered Federated Learning [19] is an ideal
framework where the server clusters clients into groups and
executes model aggregation in every cluster. It is possible for
servers who obtain all clients’ gradient trajectories to cluster
clients accurately in the FL system, as the gradient trajectory
contains important information, which is illustrated in Section
IV-C.

B. Cluster clients in FL

We introduce our method, Clustered Federated Learning
by Gradient Trajectory (CFLGT), where the server collects
gradient trajectories of all clients and clusters them into
groups, so each group can have its global model achieving a
better performance. The algorithm is presented in Algorithm
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1. The algorithm first runs for K rounds of FedAvg as pre-
training. After finishing pre-training, the server broadcasts the
current global model hg to every client in the FL system. Once
receiving hg , the client calculates the pulling force Z1 and
pushing force Z2 on local data by Eq. (6) and then gets average
values of pulling force and pushing force separately Z′

1,Z′
2 by

Eq. (8). Note that Z′
1,Z′

2 are the x- and y-axis coordinates
of gradient trajectory in the two- dimensional space. Z′

1,Z′
2 of

every client will be uploaded to the server, which uses gradient
trajectories (Z′

1,Z′
2 of clients) as input of Affinity Propagation

to cluster clients into groups. Specifically, the input of Affinity
Propagation is the distance between two trajectories, calculated
by averaging the L2 distance between corresponding points,
such as (Z′C

1 ,Z′C
2 ) of two trajectories.

Once client clusters are defined, the algorithm runs T rounds
of Clustered Federated Learning. In every round, the server
randomly selects a subset of clients U t. The client m chooses
its group’s model hg,c as initialization, updates it to hmc,c where
c is short for client, and sends it to the server. The server
aggregates clients in the same group to update a new hg,c for
the next round of training.

C. Information in Gradient Trajectory

Why is gradient trajectory the key in our method? The
answer lies inside the information in the gradient trajectory.
Since the gradient trajectory represents the pulling force Z1

and pushing force Z2, and then figuring out what information
the Z1 and Z2 carry can help us understand the information
gradient trajectory carries.

Information of dataset: According to Eq. (6), it is clear
that the value of Z1 and Z2 is directly correlated to the label
distribution of the dataset. As a result, reconstructed by Z1

and Z2, the gradient trajectory also has information on dataset
distribution.

Information of model update: In this part, we theoretically
prove that the gradient norm is greatly affected by Z1 and Z2.
According to [34], the L2 norm of gradient in l-th layer for
i-th sample (xi, yi) can be written as:

∥∇wl
F (h; xi, yi)∥2 ≤ ρ

∥∥ϖ′diag((wT
1 vi), · · · , (wT

Cvi))∇Pi
F
∥∥
2
,

(9)
where F is loss function, h is model, ϖ is the softmax
function, {wj}Cj=1 is the weights of bottom layer (classifier),
C is the classes of task, vi is the output of feature extractor of
i-th sample, ρ is the coefficient determined by model structure,
and Pi is the probability vector of i-th sample (the output of
softmax layer).

Since the loss function of i-th sample(xi, yi) is represented
as

F = −
C∑

j=1

yi,j logPi,j , (10)

where yi,j ∈ {0, 1} and Pi,j is a non-zero probability value,
we can get

∥∇F (h; xi, yi)∥2 ≤ ρ

∥∥∥∥ϖ′diag((wT
1 vi), · · · , (wT

Cvi))(−
lg e

Pi,k
)

∥∥∥∥
2

.

(11)

Algorithm 1 CFLGT
Require: learning rate η, initial model h, set of clients M ,

pre-training rounds K, FL rounds T , local training epoch
r.

1: Server: hg ← h
2: for t = 0, 1, 2, ...,K − 1 do
3: hg ← FedAvg(hg,M)
4: end for
5: for m ∈M in parallel do
6: get mZ1, mZ2 by Eq. (6)
7: get mZ′

1, mZ′
2 by Eq. (8)

8: send mZ′
1, mZ′

2 to server
9: end for

10: In server:
11: C, [hg,c]Cc=1 ← AffinityPropagation([iZ′

1,
i Z′

2]
M
i=1)

12: for t = 0, 1, 2, ..., T − 1 do
13: U t ← random subset of clients M
14: for c ∈ C do
15: for c ∈ U t in parallel do
16: if c ∈ c then
17: hc ← hg,c
18: hc ← LocalUpdate(hc)
19: client sends hc to server
20: end if
21: end for
22: hg,c ← 1∑

m∈Ut&m∈c Nm

∑
(m∈Ut&m∈c) hc,m.

23: end for
24: end for
25: return [hg,c]Cc=1

26:
27: LocalUpdate(hc, r, η) for m-th client
28: for q = 0, ..., r − 1 do
29: gradient descent h′

c,m = hc,m − η∇̂F (hc,m, Dm)
30: end for
31: return h′

c,m

Note that k is the only class satisfying yi,k = 1. The right
term of Eq. (11) can be written as

ρ0
∥∥∥∥diag( 1

Pi,k
ϖ′(wT

1 vi), · · · ,
1

Pi,k
ϖ′(wT

Cvi))
∥∥∥∥
2

= ρ0
∥∥diag(β1

1 , · · · , β2
k, · · · , β1

C)
∥∥
2
.

(12)

For β1
j (j ̸= k), we get

β1 =
1

Pi,k(
∑C

j exp(wT
j vi))

exp(wT
j vi) exp(wT

j vi)∑C
j exp(wT

j vi)

= − 1

Pi,k(
∑C

j exp(wT
j vi))

σ0

≤ − σ0∑C
j [Pi,k(1 + (wT

j vi))]

≤ − σ0∑C
j [Pi,k + (wT

j Pi,kvi))]
.

(13)

Recall that the pulling force Z1,i of a sample can be
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represented as Pi,kvi, so we get

β1 ≤ B1 = − σ∑C
j [Pi,k + (wT

j Z1,i))]
. (14)

For β2
j (j = k), we get

β2 =
exp(wT

j vi)(
∑C

j exp(wT
j vi)− exp(wT

j vi))∑C
j exp(wT

j vi)Pi,k

∑C
j exp(wT

j vi)

= σ1
1

Pi,k

∑C
j exp(wT

j vi)

≤ σ1
1

Pi,k

∑C
j exp(wT

j vi)−
∑

j wT
j vi

≤ σ1
1

Pi,k

∑C
j [1 + (wT

j vi)]−
∑

j wT
j vi

≤ σ1∑
j [Pi,k − (1− Pi,k)wT

j vi]
.

(15)

Recall that the pushing force Z2,i of a sample can be
represented as (1− Pi,k)vi, so we get

β2 ≤ B2 =
σ1∑

j [Pi,k − wT
j Z2,i]

As a result, the L2 norm of gradient in l-th layer for i-th
sample (xi, yi) can be written as:

∥∇wl
F (h;xi, yi)∥2

≤ ρ0
∥∥diag(β1

1 , ..., β
2
k, ..., β

1
C)

∥∥
2

≤ ρ0
∥∥diag(B1

1 , ..., B
2
k, ..., B

1
C)

∥∥
2
.

(16)

As shown in [35], the L2 norm of the gradient reflects
the model update characteristics well. The larger the gradient
norm, the bigger the contribution to the model update of the
sample. The Eq. (16) shows that pulling force Z1 and pushing
force Z2 affect the variation of gradient norm; thus, we can
show that Z1 and Z2 can show vital information of model
update.

In summary, since the pulling and pushing forces carry
information on model update and dataset distribution, the gra-
dient trajectory is a good choice for client clustering. In an FL
system, a trajectory represents the dataset and model update of
the correspondent client. By clustering the trajectories, we can
group clients who are similar at the model update and dataset
level into the same category, thus alleviating the impact of
heterogeneous data.

D. Analysis of CFLGT

Firstly, the point order of trajectory cannot influence the
result of client clustering. Though it is the order of the
points that defines the shape of the trajectory, our clustering
input is a distance matrix, computed by the distance between
corresponding points of the trajectory. Thus, whatever the
order is, the distance matrix is fixed and so is the clustering
result.

For clients, calculating pulling force Z1 and pushing force
Z2 does not consume much time. As defined in Eq. (6), the
output of feature extractor v and the probability of correct
label p are all Z1 or Z2 need, which can be obtained in forward

propagation. It means a client only needs to complete forward
propagation to get its Z1 and Z2. Considering that [34] proves
that the backward propagation requires about twice the amount
of time as the forward propagation since it needs to compute
full gradients, calculating Z1 and Z2 is not a time-consuming
task for a client.

The Affinity Propagation algorithm [36] helps achieve
clients to be clustered without a pre-defined number. The
success of Affinity Propagation is the apparent clustering trend
in the gradient trajectory, which carries client information
(proved in the section above). After rounds of pre-training, the
gradient trajectories of clients often exhibit great potential for
clustering and distinctly different distributions (An example
is shown in Fig. 5). Besides, we introduce a concept named
Hopkins Statistic H [37] to assess the clustering trend of the
data. If the data points are uniformly distributed in the space,
H is approximately 0.5. If the clustering situation exists in
the data set, H will be close to 1. The case that H is higher
than 0.75 indicates a clustering trend in the data set at a 90%
confidence level. The H of gradient trajectories are usually
higher than 0.75, reflecting the clustering trend. As a result,
the clustering trend of gradient trajectories ensures that the
server can utilize gradient trajectories for client clustering by
Affinity Propagation.

Fig. 5. Gradient Trajectories of 100 clients in an FL System. The trajectories
of the 100 clients form several distributions, showing a clear trend of
clustering.

One of the concerns about privacy in FL is unintentional
data leakage & reconstruction through inference [38], [39],
that attackers may obtain the information uploaded by clients
to the server and then utilize the information to reconstruct or
attack raw data in clients. For privacy protection, our method
only requires the client to upload its average values of pulling
force Z′

1 and pushing force Z′
2, rather than Z1 and Z2. In this

way, even though an attacker successfully captures the Z′
1 and

Z′
2, it still cannot restore the clients’ raw data by the attacking

method in [31]. The details of the privacy protection of our
method are shown in Section V.

V. EXPERIMENTS

This section presents the experiments we have performed
to evaluate CFLGT. First, we compare CFLGT with other
baselines on three scenarios, where heterogeneity is different.
Secondly, we experimentally show that CFLGT does not
need the number of clusters as input while other Clustered
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TABLE I
PERFORMANCE COMPARISONS WITH OTHER BASELINES ON THREE SCENARIOS.

THE AVERAGE ACCURACY OF THE LAST 20 ROUNDS IS REPORTED. THE µ IN FEDPROX IS 0.001 [15].

Methods
Cifar Fmnist SVHN

scenario1 scenario2 scenario3 scenario1 scenario2 scenario3 scenario1 scenario2 scenario3

Fedavg 46.44% 50.51% 36.23% 79.09% 83.21% 74.45% 25.23% 75.94% 69.89%

Fedavg+FT 78.05% 64.87% 69.03% 97.58% 90.45% 91.14% 57.28% 82.53% 71.07%

Fedprox 40.64% 48.57% 32.02% 78.45% 83.04% 74.72% 25.23% 71.69% 56.86%

Fedsem 73.97% 64.49% 69.10% 99.63% 91.37% 84.86% 74.47% 81.54% 81.12%

FL+HC 81.40% 65.37% 72.70% 99.61% 92.37% 84.58% 91.36% 84.69% 85.74%

IFCA 72.80% 60.20% 54.66% 98.87% 91.01% 84.89% 51.03% 80.84% 30.47%

CFLGT 83.17% 65.72% 73.49% 99.64% 92.34% 93.09% 92.61% 84.91% 86.33%

Federated Learning (CFL) methods may suffer from a wrong
pre-defined number of clusters. Then a comparative exper-
iment demonstrates that our method is more efficient and
can be implemented without significant communication or
computation expense. Finally, we show why our method can
protect the data privacy of clients.

A. Performance Comparison

Experimental Setting: We design three scenarios in exper-
iments, which are done in related works [19], [40], [41]. In
the first heterogeneous scenario (scenario 1), we consider that
each dataset consists of two types of labels. Take Cifar10 as
an example. One dataset can have labels 0 and 1, whereas
the other has labels 1 and 3. We form five types of label
combinations randomly from these to indicate different data
distributions. After that, each client randomly chooses one
label combination and is assigned 50 samples for each type of
label. Note that the selected sample will not be selected again.
As a result, the FL system finally has 100 clients, each with
50 × 2 training samples. Since clusters should be generated
based on types of data distribution, the clients can naturally
form 5 clusters.

The second heterogeneous scenario (scenario 2) is similar
to the first one, except that we consider five labels in each
combination. Thus, in scenario 2, a client has 50× 5 training
samples.

The third heterogeneous scenario (scenario 3) also follows
scenario 1, but there are twenty combinations in all, and every
combination contains three types of labels. Considering that
every client selects one from 20 twenty combinations and the
server does not exactly know the combination of every client,
it is possible that the FL system contains less than 20 data
distributions, making scenario 3 a more challenging task. For
other CFL methods, we suppose that the clients form twenty
clusters based on the data distribution, and the FL system in
scenario 3 has 100 clients with 50× 3 samples each.

The three scenarios are implemented with Cifar10, Fash-
ionMNIST, and SVHN. Lenet (A CNN in Python) is chosen
in Cifar10 and Street View House Numbers (SVHN) Dataset

and a 2-layer DNN is for FashionMNIST. We take 200 global
rounds (100 global rounds in FashionMNIST) and an extra 25
pre-training rounds for Clustered Federated Learning baselines
with a batch size of 32, SGD with momentum 0.9 as the
optimizer, and a learning rate of 0.001. In each training
round, 20% of clients are chosen to participate in training,
and accuracy is calculated by averaging accuracy on the test
dataset across all clients.

Baselines: We compare CFGLT with other CFL algorithms,
including FL+HC based on model parameters, FedSem based
on model L2-distance, and IFCA based on models’ local
performance. In FL+HC, the server receives the update of the
client model and uses Hierarchical Clustering [42] to assign
clients into groups. In Fedsem, after obtaining updated models
from clients, the server assigns the client to the corresponding
group with the L2 distance of models. In IFCA, the server only
stores global models of all clusters while every client chooses
its group based on the global models’ performance on the
local dataset. Some popular FL algorithms are also involved:
FedAvg, FedProx based on regularization in the loss function,
and FedAvg+FT, where after receiving the global model,
the client will update the bottom layer of the model on its
data. FedAvg+FT is proved as a powerful and straightforward
Personalized Federated Learning method in [16].

For a fair comparison, all clustering methods are completed
in the pre-training round, where all clients are involved. After
entering the global training, each client will not be moved to
another group. This setting can help us know the efficiency
and accuracy of clustering methods since a bad clustering of
clients causes a bad model performance in FL.

Results and Analysis: The results compared with baselines
are listed in Table I. Note that we take five local training
epochs and calculate the average accuracy of the last 20
rounds. Among all algorithms, our method achieves almost
all the best outcomes. Some methods perform almost as well
as CFLGT in several situations, because they get the right pre-
defined number of clusters, which is impractical in real tasks
(like scenario 3). With a wrong pre-defined cluster number,
their performance decreases sharply while our method will not
be influenced, which will be displayed in the following part.
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Fig. 6. Trajectories for clusters in scenario 1 based on Cifar10. Each one plots the trajectories of clients in one cluster, the output of the clustering algorithm.
It is clear that clients in the same cluster have similar trajectories. Some clusters of trajectories may have similar shapes but have different coordinate values.
(e.g. cluster 0 and cluster 1) These images prove that the clustering of trajectories in CFLGT is reasonable.

In summary, The results echo the values of gradient trajectory
about the model update and dataset distribution, which are
utilized in client clustering.

To evaluate the clustering of CFLGT, we visualize the
trajectories of clusters in the experiment (scenario 1 based
on Cifar10) as shown in Fig. 6. Note that we set 5 dataset
distributions among clients in scenario 1, and our method
produces five groups of clients, which totally matches our
setting. It shows that our method works correctly. Meanwhile,
from Fig. 6 we can see that there is apparent diversity between
trajectories of clusters. Because a trajectory represents a client
in the FL system, the diversity displays that our method indeed
groups clients well. Additionally, we can see that clients in the
same cluster have similar shapes of trajectories. It means that
similar clients are clustered into the same group.

B. No Need of Pre-defined Number of Cluster

In a real-world task, it is hard for the server to get informa-
tion about clients’ data distribution, resulting in a wrong pre-
defined number of clusters. But our method relies on defining
the number of clusters, avoiding potential damage by the
wrong number of clusters. In this part, our experiments show
the negative impact of the wrong number of clusters on the FL
system and the benefits of our method. Considering the high
performance in the previous experiments, we choose FL+HC
to testify to the damage from the wrong cluster number
for a better comparison. First, we add two extra baselines,
FL+HC(10) and FL+HC(30). The first one represents 10
clusters as the input of FL+HC and another one represents
30 clusters as the input. The experiments are implemented in
scenario 3 based on Cifar10 (we set 20 distributions across
clients). As a result, we compare our method with three
baselines including FL+HC(20) (right number of cluster),
FL+HC(10), and FL+HC(30).

The results are shown in Table II, from which we can see
that CFLGT can achieve good performance in scenario 3 as
it does not need anything about dataset information. However,
the FL+HC algorithm with the right number is almost as good
as CFLGT. But FL+HC(10) and FL+HC(30) lead to reduced
performance. The source of the problem is obvious. As shown
in Fig. 7, FL+HC(10) has fewer clusters than FL+HC(20),
so the server arranges unique clients with other dissimilar
clients into the same group, hurting the model aggregation

Fig. 7. Number of clients in each cluster for three baselines. The Y-axis
represents the generated clusters and the X-axis shows the number of clients
in each corresponding cluster. The results (a)(b)(c) are from FL+HC(10),
FL+HC(20), and FL+HC(30) respectively.

TABLE II
PERFORMANCE COMPARISONS WITH OTHER BASELINES ON SCENARIO 3.

THE FL+HC HAS THE CORRECT NUMBER OF CLUSTERS AS INPUT.
THE AVERAGE ACCURACY OF THE LAST 20 ROUNDS IS REPORTED AND

THE FIGURE REPRESENTS THE PRE-DEFINED NUMBER OF CLUSTERS.

FL+HC(10) FL+HC(20) FL+HC(30) CFLGT

scenario3 67.90% 72.70% 70.51% 73.49%

in the group. FL+HC(30) has more clusters, so the server
splits similar clients into different groups, hurting the model
aggregation as well. Because in several groups, there is only
one client, resulting in the aggregation as a failure.

C. Efficiency Comparison

We analyze the time cost and volume of uploaded data of
CFL methods among the baselines. In the experiment, we
set up a scenario closer to a complex environment in the
real world, where the trained model is AlexNet [43] without
batch norm layers and dropout layers. Every client’s dataset
contains 1500 images and all clients are involved during
client clustering. We compare our method (CFLGT) with
the CFL methods above (FL+HC, FedSem, and IFCA). Note
that we set the number of clusters as 15 since there are 15
data distributions among clients. In the experiment, we focus
on the consumption of computing resources and the needed
bandwidth of these methods.

Consumption of computing resources: For the consumption
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Fig. 8. Results in Gradient Leakage. The two sets of images on the right display the update of the fake image to the original image as iteration grows. The
upper one is based on the gradient of the whole model and another one is based on the gradient of the bottom layer of the model. The figure on the left
shows the change in gradient distance as the iteration increases.

Fig. 9. Efficiency Comparison. The result (a) represents the time cost of the
client. The result (b) represents the time cost of the server and the result (c)
represents the size of uploaded data from client to server.

of computing resources, the time cost of CFLGT is the best.
Since the clustering is composed of computation in client and
server, we analyze the time-cost on the client and the server
separately. For time-cost on the client side, Left plots in Figure
9 show that our method uses the least computing resources.
The FL+HC and FedSem need to update the model, including
complex backpropagation. The IFCA requires every client to
test all 15 global models on their dataset, causing a huge
consumption of computing resources. For the time cost on the
server side, the middle plot of Figure 9 shows that our method
does not require the server to complete extensive calculations
while the server in FL+HC is burdened with heavy work.

Bandwidth: We evaluate the required bandwidth by estimat-
ing the size of the uploaded data from the client. The results in
Figure 9 (c) clarify that only a very low bandwidth is required
in our method even though every client is involved in client
clustering. The client just uploads its gradient trajectories, i.e.,
0.078KB estimated in the experiment. In contrast, the other
CFL methods need to upload the whole model parameters,
which increases the burden of communication when a huge
model is implemented in the FL system. For example, BERT
[44], a popular NLP model, contains over 300 million param-
eters sizing in 340 MB. If BERT is chosen as the training
model, IFCA even needs a server to broadcast BERT models
of all clusters to every client.

The above results in consumption of resources and band-
width show that our method can be used in a poor communi-
cation environment and resource-constrained devices, and thus
can be more practical in real-world tasks.

D. Privacy Protection

We set up a comparison experiment to testify to the privacy
protection of CFLGT. Note that we only discuss the privacy
protection of information exchange between the client and the
server and the rest of FL privacy issues are not included.
Suppose there is an attacker disguised as a client in the FL
system. The FL system is vulnerable to inference attacks, as
every client contains one image as a dataset and updates only
once time in local training in each round. If the attacker
captures the update uploaded to the server by one of the
clients, it can restore the raw image by the method in [22].
Specifically, the attacker generates a noisy image of the same
size as the raw image, called a fake image. Then it shortens
the distance between the captured gradient and the gradient
from the fake image in multiple iterations. The attacker utilizes
the gradient descent method to update its fake image during
the iterations until the distance is close to zero. Finally, the
attacker can obtain an image very close to the raw image. The
top right images in Fig. 8 show a successful inference attack
by the captured gradient of the whole model.

For CFLGT, we set up the worst-case situation, where the
attacker obtains the pulling force and pushing force and then
combines them into the gradient of the bottom layer. As a
result, the attack can utilize the same inference method with
the captured gradient of the bottom layer to restore raw data.
However, the bottom right images in Fig. 8 show that the
attacker fails to obtain the raw image from the fake image since
it still gets an image composed of noise after 300 iterations.
Meanwhile, the left chart in Fig. 8 exhibits that the gradient
distance in the scenario remains much higher than the attack
based on the gradient of the whole model. It means that the
attacker cannot complete an inference attack only with the
gradient of the bottom layer in a model.

Note that in a real scenario of CFLGT, the attacker cannot
even restore the pulling force and pushing force because it
only captures the average values of pulling force and pushing
force. Thus it is much harder to compute the gradient of the
bottom layer. Therefore, our method, where clients only upload
average values of pulling force and pushing force, is more
robust on inference attacks.
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VI. CONCLUSIONS AND FUTURE WORK

In this paper, we utilize the gradient of the bottom layer
of the model in Federated Learning and transform it into a
gradient trajectory. We show that with the trajectories from
all the clients, the server can effectively observe the hetero-
geneity of the data. Based on this, we proposed a Clustered
Federated Learning method (CFLGT) where the server utilizes
the gradient trajectory to cluster clients into groups and then
aggregates models in every group. We have shown our method
to be beneficial in theory and comprehensive experiments
demonstrate its advantages in real-world scenarios.

For future research, we plan to improve the client clustering
mechanisms of the CFLGT so that it can perform accurate
clustering when new clients join or clients’ data changes.
We also hope to expand our research to regression tasks and
unsupervised tasks. Plus, as a variant of federated learning, a
still faces the problem of Communication and Synchroniza-
tion Overhead. We will try to optimize the communication
protocols to overcome the difficulties and further improve the
performance of the CFLGT.
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gradients–how easy is it to break privacy in federated learning?” arXiv
preprint arXiv:2003.14053, 2020.

[31] B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage
from gradients,” arXiv preprint arXiv:2001.02610, 2020.

[32] C. E. Brown, “Coefficient of variation,” in Applied multivariate statistics
in geohydrology and related sciences. Springer, 1998, pp. 155–157.

[33] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, “Fedbn: Feder-
ated learning on non-iid features via local batch normalization,” arXiv
preprint arXiv:2102.07623, 2021.

[34] A. Katharopoulos and F. Fleuret, “Not all samples are created equal:
Deep learning with importance sampling,” in International conference
on machine learning. PMLR, 2018, pp. 2525–2534.

[35] Y. He, J. Ren, G. Yu, and J. Yuan, “Importance-aware data selection and
resource allocation in federated edge learning system,” IEEE Transac-
tions on Vehicular Technology, vol. 69, no. 11, pp. 13 593–13 605, 2020.

[36] D. Dueck, Affinity propagation: clustering data by passing messages.
Citeseer, 2009.

[37] A. Banerjee and R. N. Dave, “Validating clusters using the hopkins
statistic,” in 2004 IEEE International conference on fuzzy systems (IEEE
Cat. No. 04CH37542), vol. 1. IEEE, 2004, pp. 149–153.

[38] V. Mothukuri, R. M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha,
and G. Srivastava, “A survey on security and privacy of federated
learning,” Future Generation Computer Systems, vol. 115, pp. 619–640,
2021.

[39] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan:
information leakage from collaborative deep learning,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security, 2017, pp. 603–618.



11

[40] D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model
distillation,” arXiv preprint arXiv:1910.03581, 2019.

[41] F. Yu, A. S. Rawat, A. Menon, and S. Kumar, “Federated learning with
only positive labels,” in International Conference on Machine Learning.
PMLR, 2020, pp. 10 946–10 956.

[42] F. Murtagh and P. Contreras, “Algorithms for hierarchical clustering: an
overview,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 2, no. 1, pp. 86–97, 2012.

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[44] I. Tenney, D. Das, and E. Pavlick, “Bert rediscovers the classical nlp
pipeline,” arXiv preprint arXiv:1905.05950, 2019.


