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Abstract—Effective control of emerging cyberphysical systems
such as smart transportation, smart health-care, etc. requires
edge computing infrastructure that is often organized into three
layers, namely edge (IoT) devices, edge controllers (ECs) and the
cloud. In large infrastructures, ECs must be deployed densely in
the proximity of edge devices and need to satisfy strict constraints
on cost, size, cooling, etc. Thus, ECs cannot host large amounts of
local storage and instead must make use of cloud storage in the
background to provide an impression of large, fast local storage
to host the IoT device data needed for online and real-time
queries. In this paper, we provide insights into the configuration
issues of such an edge storage infrastructure (ESI) based on
the evaluation of commercial ESIs on several real-world edge
computing workloads. We also show that the current ESI designs
are lacking in several respects, and suggest some approaches for
enhancing their capabilities to meet the stringent requirements
of emerging edge computing applications.

Index Terms—Edge Computing, Edge Storage Infrastructure,
Object Storage, Configuration

I. INTRODUCTION

An important goal for the ongoing deployment of the edge
computing infrastructure and the 5G networks is intelligent
control of a wide variety of cyberphysical systems affecting
every aspect of the daily life of the citizens [1]. Edge comput-
ing together with high-bandwidth 5G networks is expected to
support a large number of critical applications including traffic
management, surveillance, wellness and health care manage-
ment, smart manufacturing, smart distribution logistics, etc.
[2]. Edge computing typically uses a 3-layer model as shown
in Fig. 1, where the bottom layer form the edge devices that
connect wirelessly to the middle layer of edge controllers
(ECs) in the local region. The ECs receive data streams from
the devices and do real-time analytics and short-term storage
of the data. They also handle queries on the data which may
involve collaboration with other ECs (e.g., tracking a car in the
smart transportation context). The ECs connect to the cloud
on the backend which provides long term storage for data and
offline analytics on it.

A large cyber-physical system may require extensive EC
infrastructure, with each EC managing many IoT devices
including those generating large data streams (e.g., cameras)
and providing efficient online access to large data sets (e.g.,
feature matching over cars on the road, or a large number
of medical images). To minimize the deployment costs, an
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Fig. 1. Hierarchical architecture of edge computing.
EC is likely to be housed in a small enclosure that is placed
inconspicuously somewhere without the benefits of a typical
machine room type of location. This results in serious limi-
tations on the size, weight, power consumption, and physical
access, and in turn requires a hardware/software design that
automatically exploits the cloud resources where possible and
desirable for computation and storage. In particular, the Edge
Storage Infrastructure (ESI) [3] must be designed to exploit a
small amount of fast local storage along with transparent data
transfers to and from the cloud storage to create an impression
of essentially unlimited local storage. In this paper, we focus
on this aspect and discuss the issues and insights in configuring
the local compute and storage resources to meet the QoS
requirements of the edge computing applications.

The bottom layer in this model could consist of both smart
devices (i.e., those with general purpose computing/storage
capabilities) interacting directly with ECs or regular devices
(e.g., a few ordinary cameras) interfaced locally with an ”edge
computing device” that then interacts with the ECs. In either
case, the ESI model can be applied at the device layer also with
remote storage located on the EC, although current commercial
ESI offerings are not targeted for this purpose.

In this paper we present our insights into the workload,
resource and performance characteristics of ESI based on an
experimental evaluation of a commercial ESI system (also
called as Storage Gateway) using demands of practical stream-
ing workloads. The evaluation reveals a number of areas where
the current ESI implementations must be improved to support
emerging edge computing applications with increasingly var-
ied QoS requirements including those where the tail latency
must be controlled tightly.

The rest of the paper is organized as follows. We discuss
the related work in section II and then introduce the ESI
and its configuration issues in section III. In section IV, we
present our experimental evaluation approach and then discuss



empirical findings in section V. Based on our findings, we
recommend potential ESI enhancements in section VI. We
conclude the paper in section VII.

II. RELATED WORK

Edge Storage Infrastructure (ESI) is a relatively new
paradigm in bridging the performance/latency gap between
local SCSI access and back end Cloud OSS. However, it
is well known that the storage system performance depends
on the workload characteristics, deployed optimizations, and
their specific configuration in a complex way [4] which makes
accurate modeling very difficult. Costa et al. [4] support our
complexity problem, their study relates to data compression
and enable/disable data deduplication efforts. IBM authors,
Ofer [5] used deep learning techniques in object storage
systems to recommend the best strategy for cache eviction
and refreshing data. Their study is the closest that relates to
our work both in terms of the application of deep learning
and working with cloud based object storage systems. While
their study applies deep learning to caching techniques in an
object store, we explore the resource allocation of object store
based ESI. The work by Rao [6] relates to our problem domain
wherein they use reinforced learning/ Artificial Neural Net-
works (ANN) for resource allocation to a virtual machine; their
results support our observations that the traditional control the-
ory is inadequate to capture the relationship between multiple
control and system outputs limits. Storage configuration brings
in substantial additional complexity due to stored data access
and movement. Configuring for optimal performance depends
on hardware and workloads, and is challenging because of
the immense number of configurations their complexities and
nonlinear system behavior [7]. Configurations also ”are often
difficult and knowledge-intensive to develop, brittle to various
environment and systems changes, and limited in capacity to
deal with non-steady-state phenomena [8]”.

III. EDGE STORAGE INFRASTRUCTURE

An Edge Storage Infrastructure (ESI) such as a commer-
cially available Storage Gateway can be viewed as ”two-
layer IO bus” (shown with markers in Fig 2): (Point A)
front-end IO traffic from local users and (Point C) the back-
end IO upload/fetch traffic to/from Cloud storage. The Edge
Controller (Point B) has to match the vast gap between the
bandwidth offered by SCSI transfer rates of (A) and back
end unpredictable network conditions of (C), and a suitable
caching mechanism for each so that data transfers to/from the
backend Cloud Storage (Point D) can be properly handled.
The advantage of ESI is that while the user data resides on the
Cloud, it makes the access appear going to a local block device
such as SCSI. For this, the ESI needs to manage the protocol
conversion, where SCSI IO blocks of rather small size (e.g., 4
or 16 KB) have to be converted into https/REST based object
store accesses, since the cloud interface is invariably object
based. The object sizes could vary over a large range, although
extremely large files are generally broken up into objects of

some maximum size such as a few GB. This conversion affects
IO acknowledgment, retries, buffering, latency, etc.

Fig. 2. Three Tier Study of Edge Storage Infrastructure.

An ESI should bridge the IO gap between the on-premise
SCSI based disk operations (high IO rate, low latency, almost
zero errors) and the backend Cloud object storage system
(low IO rate, high latency, retry on timeouts/errors). The
server capabilities, resource allocation, and configuration of
the Edge Controller becomes an important factor that defines
the latency/performance experienced by the users. The com-
plexities involved in the Cloud-based object-store workload
patterns are different from the traditional local block IO
workloads. We will examine (i) these complex factors and
their effect on the behavior of ESI, (ii) performance/ latency
experienced by the user workloads, and (iii) the Cloud upload
conditions (or failures). Beyond delivering user performance,
Edge Controllers have to satisfy constraints such as cost/
space/ cooling, etc.

A. Brief Overview of Object Store

In object store, data is represented as an ”object”, which
refers to a piece of data described (and pointed to) by the
appropriate metadata. The metadata resides separately in a
metadata server (MDS). The objects are stored on ”object
storage devices” (OSDs) that natively manage the mapping of
the objects to the underlying device structure such as sectors
or blocks. The metadata server together with the OSDs also
implements access control to the objects so that it is not
possible to directly access an object from OSDs. Instead, a
query to the metadata server generates a capability that must
be presented to the OSD for access to the data. A single
metadata server typically serves multiple OSDs. To access an
object, an application first contacts the metadata server, and
then directly accesses the relevant OSD to retrieve the data
using the capability provided by the metadata server. This
makes the object store model quite scalable since accesses
to multiple OSDs can proceed in parallel. This structure is
shown in Fig. 3.

An object could represent any type of entity including entire
file, fragment of a file, a contiguous set of database rows, a
directory, etc. Object size is often limited, so that a very large
file may have to be split into multiple objects. Most common
types of data stored in the object store are unstructured data
(but rich with metadata) such as images, audio, and video
clips. Objects are typically identified with 64 bit Object ID
and grouped within partitions with 64 bit partition ID. This
gives each object a unique 128 bit namespace [9].

Rich metadata and flexibility of objects enable the user to
find data based upon regular expressions or search in large



data-sets on metadata properties. This allows users to treat
the Cloud as a large database of objects. As the size of the
Cloud grows, so does the ability to find data based on required
object-properties (e.g Films created before 1980).

Metadata processing is essential to suitably access an object
and small sized metadata makes it easier to cache. Thus,
dedicating adequate compute resources to process metadata
is crucial for good storage retrieval performance.

Fig. 3. Object Storage Infrastructure [9]

In traditional block file systems, block allocation and data
transfer are very expensive. In block IO file systems API
structure forces users to make more frequent API access
(open, write, seek, close). OSDs grants (or denies) access to
individual objects and fetch (or write) the objects using high
level API calls that encapsulates low level details.

Because of these advantages, Object storage forms an ideal
platform for data storage on the Cloud. Every object can be
accessed directly with a unique ID and direct http/REST API,
making data access faster. For these reasons, all commercial
vendors of ESI devices use Object store as a Cloud Storage
platform.

B. Characterizing the Behavior of ESI systems

Characterizing the behavior of cyber-systems is difficult due
to the numerous parameters with complex inter-dependencies
that are mostly unknown or poorly understood with respect
to their impact on the overall performance, availability or
user experience. These dependencies and complex behavior
make analytic modeling of performance very difficult [10].
ESI combines the complexities inherent in a storage system,
cache allocation, IO demands and the unpredictable nature of
back end Cloud systems [11].

It is often very difficult to pinpoint how a change in
system configuration can affect the overall performance of the
system. Even the concept of performance itself can be subject
to scrutiny when considering the complexities of subsystem
interactions and the many ways in which performance metrics
can be defined [12]. Similar to other cyber-systems, ESI
too has many configuration parameters or ”knobs” with little
clarity on how to set them or what precise impact they have
on the output end.

1) Workload and Application Scenario: User workloads
use objects of a varied size that may be uploaded to Cloud

(write/put operation) or fetched from the Cloud (read/get
operation). They represent real-world scenarios from traffic
cameras/ smart city grids, video uploads, measurements from
IoT devices, and medical images. Yi [16] has characterized
the application scenarios and the demands placed by such
users/workloads on Edge/Fog Computing Infrastructure. Ad-
ditional workload properties and the influence of metadata
is explained in later sections. We studied ESI with a large
range of workloads with comparable studies from Yi [16],
Varma [14], and YCSB [17]. Our scenario matches YCSB
workloads with uniform distribution and large write intensive
IO operations. Table I compares the different workloads used
in our studies with a related example of real-world objects.
In Table. I, DICOM (Digital Imaging and Communications in
Medicine) refers to a standard for handling, storing, printing,
and transmitting information in medical imaging. We are
aware that user workloads include continuous incoming data
streams like traffic images and discontinuous objects like
IoT/Medical Images. We have considered both scenarios in
our evaluations. In our experiments, we stressed the metadata
structure with ownership O, flat dir. F or deep sub-directories
D and permission P (shown as O,D,F,P in Table I).

2) Interface and Access to Data: Legacy and standard
applications should be able to access data in ESI without
any application re-writes. Typically, applications access data
locally over SCSI bus, that operate at block IO levels (4K,
16K blocks). Delays due to data unavailability, connectivity,
poor performance, etc. will degrade the user experience often
resulting in application failures and time-outs. In addition
to overheads such as protocol conversion (REST API to
SCSI/NFS), ESI should satisfy the bandwidth gap by bridging
the high performance/low latency user-side demands (Point A
in Fig. 2) with high latency, unpredictable network on the back
end (Point C in the same figure).

3) Security and Metadata: Security and metadata manage-
ment in ESI system is a complex task. File access by a legacy
application over SCSI should be translated to a OSD object
operation. This involves translating the low level SCSI APIs
such as file open/close and data write, to high level OSD APIs
including metadata operations. Further, file attributes such as
permissions, directory structure, etc. have to be transferred
to OSD operations like Object ID, object path, metadata at-
tributes. These metadata overheads involve considerable space
and time, and consume both CPU and memory resources.
Faster CPU speeds can translate the file-attribute (permission,
sub-directory, name) to object metadata (ownership, object
path, Object ID) faster. Thus, size of metadata operations
and allocated resource (CPU speeds, metadata space) play an
important factor in determining the user experience in an ESI
system. All Object Storage Service (OSS) operations have to
consult metadata for relevant information about the object.
Caching metadata can improve performance and potentially
avoid consulting the Cloud based OSD frequently. In this
sense, resource allocation for metadata becomes an important
factor in space available to pre-fetch metadata. Better user
experience and higher performance depend on both data



ESI Workload Confais IFPS [13] IoT/Medical Images [14], [15]

Workload Type Users, Objects, Obj. Size Ops. and Obj. Size Image Type (Object) Image Size
Tiny (O,D,F,P) 25 x 10,000 x 4 KB – Health Monitors 4 KB*
Small (O,D,F,P) 25 x 10,000 x 256 KB 100 x 256 KB MRI/CT Scan 131 to 350 KB
Medium (O,D,F,P) 5 x 10,000 x 1MB 100 x 1 MB DICOM Visible Light 1 MB
Large (O,D,F,P) 5 x 1,000 x 10 MB 100 x 10 MB Mammography 27 MB
Huge (O,D,F,P) 2 x 200 x 1 GB – Pathology 1.3 GB

TABLE I
COMPARABLE WORKLOADS IN ESI SYSTEM (*ESTIMATED)

and metadata operations. Hence, compute (CPU) and storage
(space) resource allocation to both data and metadata play an
important part in determining the performance experienced by
the users of an ESI system.

C. Describing an ESI system

The performance of an ESI system can be regarded as
the throughput experienced by the client. In general, the per-
formance depends on workload characteristics, EC hardware
characteristics, and resources allocated to the workload. The
consequence of a poor choice of any of these aspects would
be experienced by the user as rejected requests or IO timeouts.
Each one of these aspects itself is difficult to characterize
because of a large number of parameters and complex re-
lationships among them. To get around the difficulties of a
detailed analytic characterization, we postulate a classification
mechanism for each of them based on the most important pa-
rameters. The choice of these parameters cannot be automated
and instead is generally derived from the domain knowledge
and insights gained by the administrator regarding various
attributes. Accordingly, based on extensive experimentation
and our experience with the ESI, we represent hardware ηh
and workload ηk classes as the following functions:

ηh = f2(cs, nc,mc, bw, di) (1)
where cs is the core speed, nc is the number of cores, mc is
the memory size, bw is the memory bandwidth, and di is the
disk IO capacity. Also,

ηk = f3(ar, rs,ms) (2)
where ar is the request arrival rate, rs is the request size,
and ms is the metadata size. For hardware aspects, we use a
classification consisting of the enumerated set {small, medium,
large}. For workload, the classification is shown in Table I.
The functions f2 and f3 are learned by training a neural net
N , the details of which are contained in [18].

The ESI resource allocation is the disk space allocation in
this case and is denoted by ηr. This is split into three distinct
partitions: data cache size db, metadata size md and log space
size ls. The log size should have no influence on performance
except that writebacks of the log would take up some backend
IO bandwidth. Obviously ηr = db+md+ ls and ηr must be
less than the total available disk space.

The performance measure p depends on the user require-
ments, and is adequately expressed as the desired read and
write throughput in either MB/s or as objects/sec [15]. Now
p can be expressed in terms of workload class ηw, Edge
Controller class ηh and resource allocation class ηr as:

p = f1(ηh, ηk, ηr) (3)

where the function f1 is also learned through the neural net
N .

IV. EXPERIMENTAL STUDY OF ESI

Using an ”off-the-shelf” ESI solution, we focused on (1)
workload performance (object write/put times) under different
scenarios (2) performance vs network traffic exchange between
ESI and Cloud OSS (3) influence of resource allocation on
performance.

In order to study the behavior of ESI, we conducted
several experiments to collect required data and analyze
various factors influencing the behavior of the ESI system.
Our experiments focused on collecting a wide range of data
under different conditions, to satisfy all features/parameters
in section III-C. We used a test environment comprising of
servers of different capacity as shown in Table III. All servers
have Ubuntu 14.04 with required tools and connected to the
local network. We used different hardware configurations to
study the influence of cores, core speeds, disk, and memory
configurations. On each of these servers, we partitioned the
disk for several cache configurations from 25 GB to 1000
GB. The server is connected to the HDD volumes on Cloud
OSS using NFS protocol.

Fig. 4. Illustration of Sample Test Data.
For each execution of the workload ηk on a given ESI

hardware ηh, we configured the resources ηr for a given
allocation set (e.g. Data cache = 250GB, metadata = 100GB)
and executed a pattern of workload ηk and collected the
performance data p. We then clear the earlier configuration
and workload data and reconfiguring for the next experiment.



For each execution, we collected metrics on execution time,
metadata time (e.g. to create sub-directories, open and close
files, etc.), throughput in bytes/sec. Alongside the workloads
ηk, we captured details of the ESI server ηh (e.g. cores, core
speed, memory, disk capacity, etc) and resource allocation ηr
(i.e. data cache area, metadata, log size). A detailed descrip-
tion of the experiment setup, workload execution, resource
configuration is given in our initial paper [18].

We captured nearly 990 data-sets and captured for various
metrics (p, ηh, ηk, ηr). An illustration of the sample data set is
shown in Fig. 4. The figure shows individual data points for
various performance p observed for different combinations of
workload ηk, server ηh and resource allocation ηr (Eq. 3).
We analyze the collected data from various experiments and
present our empirical findings below.

V. EVALUATION AND EMPIRICAL FINDINGS

In this section, we evaluate the empirical results in terms of
workload, resource allocation and performance. We compare
our performance study with the related data from Confais [13].
Confais used YCSB tool [17] to benchmark Object Store
performance between three edge storage systems. In YCSB
terminology, our study classifies as write/ update heavy, uni-
form distribution workload. In addition, we study the influence
of various parameters of Eq.{3, 2, 1} on both the user side and
the remote Cloud upload performance. Fig. 2 depicts the three
tiers of our study as (A) user workloads, (B) Object Store on
Edge Controller and (C) back end Cloud upload. The details of
the data center hosted Cloud Object Storage (D) is hidden from
the user and not included in this paper. Confais study is limited
to multiple operations of varied file size (See Table[1] in
Ref. [13]) and with no patterns in specific workloads. Table.II
shows the objects count/size and performance observed in
Confais. The matching workload type and average observed
performance (from one sample configuration) in our study are
given in the last three columns. The performance difference
between our study and Confais is attributed to the number
of objects and the architecture difference between ESI and
Confais IFPS system. The comparison validates both the
advantages of ESI (gain in performance) and the workloads
used in our research.

Our findings are based on real-world customer workloads
and empirical data collected through many months of effort.
Our workload involves entire file level operations rather than
block IO operations.

The time taken ttotal to write the file involves all the data
operations and metadata operations (including retries). Let
tdata and tmeta denote, respectively, the object data (i.e., read
or write) time and meta-data time. The latter includes sub-
directory creation time tsub (if any), file open time topen,
metadata tasks tmtask and file close time tclose. Metadata tasks
include journal maintenance, security, file locks, permissions,
versioning, etc.

Storage systems are efficient in block writes and tuned to
give the best IOPS rates. However, time taken for metadata
tasks are significantly larger than the time for a simple IO

operation (tmeta > tdata). If the ratio between time to write
object and time to perform metadata tasks is smaller, then
metadata time dominates the overall time and penalizes the
overall performance. Conversely, if the object size is large
(large IO operations), the relative time to perform metadata
tasks is much smaller (tmeta < tdata); and contributes less
to overall performance. We present the findings below and
verify our research objective alongside the observations. In
Fig. 5, 6, 7 & 8, x-axis denotes various configurations used,
and y-axis denotes the corresponding performance observed
in MBps.

Finding 1: ESI provides good performance for large/huge
workloads, but not for workloads with small file/object size.

The workload with a large number of small files would pay
the penalty in time spent on metadata operations compared
to actual data IO time. In such cases, the time to persist
the data is outweighed by the time required to complete the
metadata tasks. Multiply this by 10,000 times for the Tiny,
Small & Medium workloads in Table I, and the performance
drops significantly. For tiny workloads, tmeta translates to
one meta operation per 4KB written (or 256KB). The overall
time for 10,000 metadata operations would be significantly
larger compared to writing the data-bytes alone. This is
confirmed by the poor performance seen in Fig. 7 for Tiny
and Small workloads. The figure shows performance around
2 to 25 MB/s for Tiny and Small workloads under various
resource configurations. Allocating additional resource does
not help the situation. On the other end of the spectrum, for
Large & Huge workloads, the number of metadata tasks is
significantly smaller compared to the total write bytes, i.e.
in Huge workloads, it is 400 metadata tasks for 400GB or
about one meta-operation per one GB of data persisted. Hence,
the contribution of metadata tasks is much smaller with large
workloads. This is confirmed by high performance numbers
measured during our research (as seen in Fig. 5). The extreme
right of the figure shows performance for Large and Huge
workloads, with few files of large GB file size (See magnified
Fig. 6).

The key take away from this finding is that we need to
segregate small and large data items, and store the former in
local storage permanently. However, this would tend to reduce
the available cache for large data items. Thus, the cut-off point
of local only and remote backed storage must be determined so
that the desired balance is achieved between the performance
of small and large data items.

Finding 2: Data and Metadata IO path of the ESI influences
performance significantly. Effect of compute power (CPU,
memory) is minimal compared to the IO path.

This is borne out by our detailed study of different work-
loads and system configurations as shown in Table III. Server
A has a single disk with significant capacity (1 x 5TB); and
multiple partitions to host the data-cache and metadata. Server
B has multiple disks controlled from a single HDD controller,
with smaller capacity (3 x 500MB); and multiple partitions
on different disks to host the data-cache and metadata. Both
servers had one 32bit, 66MHz, SATA Controller. Clearly,



Confais IFPS [13] Edge Storage Infrastructure
Image Type Object Opera-

tions & Size
Time
taken (s)

Avg. perf
(MB/s)

Work-
load

Objects
(No. & Size)

Avg. perf.
(MB/s)

MRI/Small 1 x 256 KB 0.17 1.5 Small 10000 x 256 KB 10.70
MRI/Small 10 x 256 KB 0.17 0.15 Small 10000 x 256 KB 10.70
MRI/Small 100 x 256 KB 0.33 77.57 Small 10000 x 256 KB 10.70
DICOM/Medium 1 x 1 MB 0.22 4.54 Medium 10000 x 1MB 39.17
DICOM/Medium 10 x 1 MB 0.21 47.61 Medium 10000 x 1MB 39.17
DICOM/Medium 100 x 1 MB 1.07 93.45 Medium 10000 x 1MB 39.17
Mammography/Large 1 x 10 MB 0.34 29.41 Large 1000 x 10MB 177.90
Mammography/Large 10 x 10 MB 0.40 250.00 Large 1000 x 10MB 177.90
Mammography/Large 100 x 10 MB 3.92 255.10 Large 1000 x 10MB 177.90

TABLE II
COMPARING WORKLOAD AND PERFORMANCE

Fig. 5. Performance for Various Workloads under Different Server/Resource Allocations (Client Side).

Fig. 6. Performance for Large Workloads under Different Server Configurations (Client Side).

both data-cache and metadata have a common IO path in
server A. Though file operation is sequential (open, write,
close); these operations contend to the same resource, and
add to the bottleneck with one disk, and; multiple partitions
on single large disk does not help the cause. Our study is
IO intensive and all operations are dominated by the IO path.
Clearly, a multiple disk infrastructure outperforms a single
disk system as can be seen from the performance metrics
in Fig. 6. The figure shows performance on server A and
server B for Large workloads (both deep sub-dir and flat
dir. structure). All workloads shown in the figure suffer from
resource contention (data-cache & metadata) because of a
single IO path and hence has lower performance (around 50
to 75 MBps). Server B refers to a host with multiple disks and
shows better performance (225 to 270 MBps). Multi-disk (IO

path) infrastructure improves performance by a large factor in
large and huge workloads. A similar performance gain is seen
for medium workloads (but at a smaller scale because of the
ratio of object/metadata size).

The key takeaway from this observation is that an ESI
design may benefit from several smaller disks with distinct
controllers than a single large one. However, this needs to be
balanced against the increased footprint of a multi-disk system.

Finding 3: Data-cache needs to be correctly configured for
the required workload. Allocating excessive capacity can be
detrimental to performance.

The ESI needs to perform background tasks not directly
involved in the user IO path. These include garbage collection,
data eviction to Cloud, data-refresh, and are hidden by the
ESI vendor but still play an important role in the overall



Server CPU cores Memory Hard Disk NW
Card

A 8 x 2.1 GHz 32 GiB 1 x 5TB 1 GB
B 4 x 1.8 GHz 16 GiB 3 x 500GB 1 GB

TABLE III
TEST ENVIRONMENT: SERVER CONFIGURATION

performance of the system. Allocating excessive cache can
hurt these background processes, taking additional time to
examine the data in the cache. Similarly, metadata maintenance
or journaling needs to walk through the excessive metadata
space. This is shown for both Server A (single disk) and
Server B (multiple disks) with markers (A),(B) and (C) in
Fig. 6. Marker (A) shows doubling the data-cache capacity
from 99MB to 197MB can reduce performance in Server
A (for large workloads). Similarly, marker (C) shows that
985MB data-cache can perform equally as 3200MB cache.
Note: the two markers are for different workload types and
different server types. In addition to not contributing to any
gain in performance, over-allocation of capacity/resource can
strain permissible thermal profile and cooling limits (or other
constraints set by the administrator).

The key observation here is that simply using a default
cache configuration may be undesirable. However, a proper
setting requires knowledge of the workload characteristics.
This should not be an issue in an edge computing environment,
where the nature of each application shown be known and
rather invariant.

Finding 4: A better cloud upload performance can be
achieved for larger objects.

The ESI communicates with the Cloud Object Store (COS)
over the Internet which can have unpredictable delays. We
show this with empirical results in Fig. 7; here the dotted
line represents the available bandwidth between the edge
controller and the COS. Each Cloud operation pertains to
an object; either to fetch (get) or write (put) one complete
object from/to the Cloud. As stated earlier, object operations
involve related metadata operation from the metadata server.
A larger object can be fetched faster than multiple objects of
small size, because of less overhead (ratio of data-to-metadata
work). Fig. 7 illustrates this clearly with the top Cloud upload
performance observed with workloads of large object size
(i.e. Large and Huge workloads). Additionally, there exist an
optimal configurations (shown as by the dotted circle) that are
more efficient in reaching the COS, with higher performance
rates (y-axis).

The clear takeaway from this observation is that a batched
data upload to the cloud is highly desirable when individual
items are small. For data that is generated continuously (e.g., a
real-time camera stream), but in other cases, a proper batching
itself could be a source of overhead.

Finding 5: Metadata complexity significantly affects cloud
upload performance. For example, Flat directory structure
objects (smaller metadata) can be uploaded to Cloud faster
than objects with deep sub-directories (bigger metadata).

A closer comparison of workloads with deep sub-directories
vs. flat-directory is shown in Fig. 7. The reasons for meta-

data operations presented earlier is noticeable in this figure.
The difference in Cloud upload time may vary depending
on the ratio of data-block to metadata. It should be noted
that Cloud upload time over an unpredictable network is
still unpredictable. As in earlier finding, there exist optimal
configurations (shown as peaks) that have a better Cloud
upload performance (y-axis).

Metadata size influences Cloud upload performance. As
explained earlier, metadata server has to be consulted for every
object operation. A larger/richer metadata structure, such as
ownership, versioning, permissions, user-defined attribute like
department, takes a longer time to process compared to a
simple file name. For example, a deep sub-directory structure
on the SCSI side block IO has to be translated to a partition
ID and Object ID on the object store side. This takes time,
CPU and memory resource.

The takeaway from this finding is that prior knowledge of
metadata properties and rich metadata set can be exploited
to allocate required disk and memory resource for metadata,
to avoid frequent consultation with Cloud OSS for metadata
operations.

Finding 6: Insufficient resource allocation to workload can
result in IO failures.

Table IV shows cases of workload failure due to insufficient
resources. Real-world workloads such as medical mammo-
gram/pathology records or real time streams of traffic data
cannot tolerate failure due to insufficient resource allocation.
These workloads cannot be redone (or incur heavy redo costs
for the failure of uploads). These workloads are referred
to Large or Huge workload with low resource (data-cache)
allocation in our study. Huge workload represents 200GB of
data (200 x 1GB files), and the allocated data-cache were
below this requirement. Unlike traditional cache systems, ESI
cannot evict the write objects to free up data-cache space.
The eviction to the Cloud is over an unreliable network, and
cannot be guaranteed to complete at speeds required by the
front end. Hence front end user/application write operations
suffer latencies beyond acceptable limits, and latency sensi-
tive applications will suffer IO failures. Allocated data-cache
should account for user workload plus hidden operations like
garbage collection, eviction, etc.

This finding points to the need for implementing a suitable
admission control mechanism that controls the number of
concurrent applications such that all admitted applications can
receive an adequate amount of resources.

A. Completeness of Our Study

We considered workload covering a wide range of real-
world scenarios. Our workload has an upper bound of 1GB
objects and our study is restricted to few ESI servers. Our
analysis shows that ESI systems perform better with large
size objects, hence objects beyond our study boundary (i.e
objects greater than 1GB) can benefit from ESI system and not
suffer performance penalties. Of course, the server/resource
allocation would change for larger objects. Using more data



Fig. 7. Edge Storage to Cloud Upload Performance (Data Center Side).

Fig. 8. Edge Storage to Cloud Upload Performance. (Medium & Large Workloads, Data Center Side)

Server Dir
type

Objects
(No.x Size)

Cache
Allocated

Cache
Used

Test
Status

A Deep 200 x 1GB 99 GB 59% Fail
A Deep 200 x 1GB 197 GB 69% Fail
B Deep 200 x 1GB 50 GB 100% Fail
B Deep 200 x 1GB 99 GB 35% Fail
B Deep 200 x 1GB 197 GB 81% Fail
A Deep 200 x 1GB 497 GB 44% Pass
A Flat 200 x 1GB 99 GB 35% Fail
A Flat 200 x 1GB 197 GB 83% Fail
B Flat 200 x 1GB 99 GB 35% Fail
A Flat 200 x 1GB 497 GB 45% Pass

TABLE IV
WORKLOAD VS. RESOURCE USED

collected from servers of various compute and storage ca-
pacity/ capability would enrich the data-set. A larger data-set
from different ESI server would benefit the analysis and give a
better picture of the influencing factors. Our study consisted of
servers with HDD storage device. The analysis is still valid for
systems using SSDs drives since we considered the importance
of the IO path rather than the storage devices themselves. Our
initial analysis and findings from one vendor apply equally to
other vendor platforms since an Edge Controller invariably
has some compute and storage limits, yet are tasked with
satisfying the user demands (performance, workload, cost,
cooling, space). Our survey of public documents from a few
vendors show that all commercial ESI platforms provide lim-
ited options to control the resource allocation (CPU, memory,

cache space) to achieve the required workload/performance
goals.

VI. POTENTIAL ESI ENHANCEMENTS

Our study shows several areas of potential deficiencies in
current ESI implementations for highly heterogeneous work-
loads. In particular, owing to the metadata related overhead,
the ESI may not work well for small/medium sized objects
and may have difficulty in meeting tight QoS requirements.
This is likely to become more prevalent as more sophisticated
real-time edge computing services are implemented that often
require control over tail latencies (in addition to the average
latencies).

Tail latency for read operations can benefit from pinning
small/medium objects locally in the edge storage. Intelligent
pinning of objects based on metadata (e.g. file size, directory
depth, access pattern, etc.) avoids having to fetch small objects
from the Cloud. It is important to maintain a balance between
pinned and unpinned files since excessive pinning can con-
sume valuable data cache space and trigger unwanted cloud
eviction or cache cleanup overheads. The trade-off between
prefetching metadata vs. pinning objects have to be studied
since both can consume valuable resource and time. Both
can help performance but the impact needs to be evaluated
carefully. In particular, we need to address several issues in
this regard: (1) determining the critical object size under which
pinning may be beneficial, (2) ensuring that the overall pinned



content does not occupy a significant amount of space and
thereby degrade the overall performance, (3) avoiding storage
space fragmentation due to pinning, and (4) opportunistic
syncing of the pinned objects to the cloud to reduce the data
loss potential due to failure of the ESI. The pinned objects can
be batched together for pushing to the cloud. We also observe
that certain types of objects (e.g., MRI images with the small
matrix size) are statically known to be small and this simplifies
their treatment with respect to pinning and batch transfer.

Given the unpredictability of the available backend network
bandwidth and user request arrival rate, it is important to do
admission control [19] in order to provide suitable QoS to the
requests in progress. Since the admission control concerns the
availability of network bandwidth in the near future, the admis-
sion control needs to be coupled with the network bandwidth
prediction. Such a prediction can be done using well known
time-series prediction methods [20] but the performance of
such a prediction needs to be evaluated experimentally. The
prediction can also be exploited for opportunistic pushing of
modified objects to the cloud. Prediction of network conditions
can be exploited to prefetch metadata or partial objects during
bandwidth-plenty periods.

One way to reduce the overhead for small objects is by in-
telligent bundling of multiple small objects into a single larger
object, both for downloading from and uploading to the cloud.
(Note that this would require a special module on the cloud
side as well to suitably bundle outgoing data and unbundle
incoming data.) Intelligent bundling involves consideration of
several issues such as the overhead of bundling/unbundling and
extra data transfer performed as a result of bundled transfers
and needs to be investigated thoroughly.

Current ESI implementations do not support multiple QoS
classes. Such a capability is essential with a heteroge-
neous mix of workloads with different transfer sizes and
latency/throughput constraints. The QoS classification can be
exploited in deciding what class of objects to pin. It can also
be used in intelligently deciding which requests are allowed in
by the admission control mechanism when there are bandwidth
limitations.

VII. CONCLUSIONS

Right-sizing of an Edge Computing Infrastructure is impor-
tant because of the inherent limitations defined by cost, power
consumption, and cooling requirements. The complexities
inherent in a storage system plus the unpredictable network
makes detailed analytical modeling of an Edge Storage In-
frastructure (ESI) difficult. Using empirical data under various
workload/resource configurations, we studied an off-the-shelf
ESI with a goal to understand the complex parameters that
influence its behavior. Our findings highlighted the issues in
configuring ESI to handle edge computing related IO. We
also discussed several deficiencies in existing ESI designs
and some potential approaches to enhancing the ESI designs.
In the future, we will examine some of these issues and
also evaluate ESIs equipped with SSDs and other emerging
storage technologies such as Intel Optane. We believe that

our study will also motivate ESI vendors to consider further
enhancements to meet stringent QoS requirements of emerging
edge computing applications.
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