
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Performance Health Index for Complex Cyber Infrastructures

SANJEEV SONDUR AND KRISHNA KANT∗, Temple University, USA

Most IT systems depend on a set of configuration variables (CVs), expressed as a name/value pair that collectively define the resource

allocation for the system. While the ill-effects of misconfiguration or improper resource allocation are well-known, there is no effective

a priori metrics to quantify the impact of the configuration on the desired system attributes such as performance, availability, etc. In

this paper, we propose a Configuration Health Index (CHI) framework specifically attuned to the performance attribute to capture the

influence of CVs on the performance aspects of the system. We show how CHI, which is defined as a configuration scoring system,

can take advantage of the domain knowledge and the available (but rather limited) performance data to produce important insights

into the configuration settings. We compare the CHI with both well-advertised segmented non-linear models and state-of-the-art

data-driven models, and show that the CHI not only consistently provides better results but also avoids the dangers of a pure data

drive approach which may predict incorrect behavior or eliminate some essential configuration variables from consideration.

ACM Reference Format:
Sanjeev Sondur and Krishna Kant. 2021. Performance Health Index for Complex Cyber Infrastructures. 1, 1 (February 2021), 30 pages.

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION AND MOTIVATION

1.1 Problem of Configuration Management

As the data centers grow in complexity, sophistication, and size of the infrastructure and services supported, their proper

configuration is becoming a huge challenge. Most objects from services down to virtual and physical devices have many

configuration parameters (or variables), whose correct setting is crucial for proper functioning and good performance.

Many state of art literature [4, 50, 51] highlight that 70%-85% of all users’ configuration errors account for the high cost

of misconfiguration. Added to this is the poor understanding (and miscommunication) of configuration variables
1
(CVs)

on the “outcome” or behavior of the service/system, and hence results in the wrong setting or misconfigured options.

Poorly configured systems (or resource allocation) may fail to satisfy the performance, availability, security, and other

goals and result in avoidable operational costs and user dissatisfaction. Ill-effects related to system misconfiguration are

well documented [40, 51], including their impact on the economy, security incidents [52], service recovery time, loss of

confidence, social impact, etc.

In Cloud computing applications, configuring the right resources to the Cloud computing objects (i.e. Cloud storage,

virtual machines, etc.) is becoming critical, both because of the complexity involved in allocating the right resources

and understanding their overall effect on the system (e.g. cost of resource provisioning, user experience, performance,

∗
Both authors contributed equally to this research.

1
Most commonly referred to as features [13, 19]

Author’s address: Sanjeev Sondur and Krishna Kant, sanjeev.sondur@temple.edu, kkant@temple.edu, Temple University, 1801 N. Broad Street, Philadelphia,

PA, USA, 19122.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

HTTPS://ORCID.ORG/
https://doi.org/10.1145/1122445.1122456
https://orcid.org/

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Sanjeev Sondur and Krishna Kant

energy consumption, etc.) [23, 25, 27]. Further, an application can have complex relations to the resources allocated,

the input workload, internal workflows, and the configuration. It is difficult to use straightforward methods to model

such relations [2]. Resource provisioning for Cloud based applications involves several unique challenges, wherein a

Cloud instance is characterized (and priced) based on resource “configuration” (i.e. CPU family/cores, memory, and disk

capacity) [25, 46, 47, 53]. Real systems may have 10s to 1000s user-settable configuration variables (or CVs) [21, 49]; in

addition, there could be a significant number of hidden or latent manufacturer provided parameters that are not well

described. Each of these may take anywhere from two values (for binary variables) to an uncountable number of values,

although in practice the feasible values may be limited to either an explicit set of values (e.g., installed memory being

one of 32GB, 64GB, 96GB, and 128GB), or approximated by a number of buckets of potentially varying width. Even so,

the configuration space (henceforth denoted as Ω) quickly becomes too large to comprehensively characterize it. For

example, 10 CVs with 10 values each, amount to 10
10

or 10B combinations.

1.2 Motivation for Our Work

Thus, we need a more compact way of understanding the contribution of the individual CVs on the overall system

performance in the context of other settings and to get important insights into the configuration settings. For example,

when deciding how much memory to put on a given web server, it is helpful to know roughly at what point the

diminishing returns
2
kick in sufficiently strongly to make the additional memory of dubious value. In CherryPick [2],

authors noticed that the running time is affected by the amount of resources in the Cloud configuration in a non-

linear way. For instance, a regression job on SparkML (with fixed number of CPU cores) sees a diminishing return of

running time at 256GB RAM because the job does not benefit from more RAM beyond what it needs. One could ask a

similar question regarding the other configuration variables (CVs) such as page size for a database, the local storage

allocation for a Cloud Storage Gateway (CSG), CPU usage in a Virtual Machine (VM), etc. Since the main difficulty in

evaluating configurations is the interaction among settings of different CVs [21, 44, 46, 49], we need a way of capturing

the interactions in a compact manner. Configuration settings representing physical resources (e.g., computing cores,

page-size) relate to the cost constraints as well if we open up the possibility of expanding the existing systems; however,

we do not address this aspect. In other words, there are predefined ranges for all CVs and any selection must stay within

those limits.

It is difficult to get accurate performance data on the Cloud because of various factors [15] like black-box environment,

resource contention, performance uncertainty, etc. Further, it is not possible to gather detailed experimental data for all

combinations of available configuration parameters. It is for this reason, a crude metric such as Configuration Health

Index (CHI) is valuable wherein, it is important to characterize the effects of a configuration parameter on the observed

output based on the limited information available. In theory, we could do an exhaustive set of experiments and perhaps

train a neural net for each configuration parameter, however, this is not a feasible methodology due to a large number

of configuration parameters involved. Further, we include the results of one such model (section 6) and show such

an one-off consideration of the “individual” configuration parameters would loose insights into the important factors

affecting the configuration settings.

The work reported here is motivated by our earlier work in CHeSS [40] (Configuration Health Scoring System),

which defined a scoring system to compute the CHI for compactly assessing the influence of CVs on various attributes of

a system (including performance, availability, security, etc.). We discuss the general CHI concept briefly in section 3.1.

2
The point beyond which, any additional resource allocation is detrimental to performance.

Manuscript submitted to ACM

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Performance Health Index for Complex Cyber Infrastructures 3

The difference from our earlier work is that, in this paper, we focus entirely on the performance related CHI and

propose a way of exploiting the limited observational data and the domain expertise to robustly quantify the CHI scores.

We validated our approach with relevant data-center configuration experts, who acknowledged that a CHI based approach

to provide insights into the configuration settings is a concept way overdue and sorely needed by the industry.

The involvement of domain knowledge is crucial to make reasonable conclusions from limited data; the technique

cannot be purely statistical in this case. While there are risks in using domain knowledge, we mitigate this risk by only

expecting the nature of behavior from the domain experts, not its numerical parameters, which are still determined

from the limited available data. We show that such an approach is much less risky than a pure data driven approach as

the latter could easily lead to misleading conclusions. We are well aware of basic statistical methods of characterizing

different factors and their interactions, but generating statistically sound methods for computing confidence intervals

or confidence bands with adequate coverage is generally very difficult in such settings [16, 17].

To demonstrate the merits of our approach, we use real world configuration data sets (public domain) from a number

of very different systems [28, 36, 37], and our study of the Cloud Storage Gateway [38]. We show that with the limited

amount of available data, our method can produce significant insights into the configuration space and produce better

results (e.g. health score of CVs, better prediction accuracy, and low variance) since we use data to estimate some key

parameters, rather than the actual behavior itself.

The main contributions of this paper are as follows:

• Define an a priori mechanism for evaluating the quality of configuration of service in form of a scoring system

for its performance.

• Demonstrate how the domain expertise can be exploited to yield more robust score quantification without

overburdening the experts.

• Demonstrate that such a scoring system produces important insights into the configuration settings and performs

better than the state of the art techniques for a variety of configuration data sets used.

2 CONFIGURATION HEALTH SCORING SYSTEM

We explain the basic concept behind CHeSS using Fig 1, where the configuration file is processed by the framework to

output a health index of the system. CHeSS framework (center box of the same figure) inherently depended on manual

input from domain experts to assign the health-scores. The "health" of the system can be characterized along several

dimensions (or attributes) such as security, availability, manageability, performance, etc., as illustrated on the right side

as a 3-D graph in the same figure. For each attribute, we need a measure that is generally considered indicative of that

attribute without necessarily having to define a very specific measure, since specificity, while desirable, narrows the

applicability of the health measure. The impact of configuration parameters on attributes like availability or security is

difficult to access since impact (i.e. behavior) is not readily observable. For example, even if we are allowed to change the

length of the security key for testing purposes, it is nearly impossible to determine its security impact experimentally

(we can still determine its performance impact).Thus, the motivation for using performance as a key observable metric.

In other words, CHI is data enhanced version of CHeSS.

2.1 Quantification of Health Score

The scoring system must provide a compact characterization of the influence of configuration variables (or CVs) on

various attributes of interest. A preliminary scoring system called CHeSS is presented in [40]. A score is a number

Manuscript submitted to ACM

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

4 Sanjeev Sondur and Krishna Kant

between some lower bound & upper bound (e.g. 0 · · · 2) where a mid-score (e.g. 1.0) corresponds to a nominal (or

"average") configuration, the upper bound corresponds to a highly optimized configuration, and the lower bound

corresponds to a very poor (but still operational) configuration. The purpose of a scoring system is to rate configurations

in terms of a normalized measure of each attribute in a simple way in order to assess the health of the system as a

function of the configuration parameters. The health index is not synonymous with very specific or detailed measures

that require a detailed quantitative model; instead, it is intended as a measure over the configuration space that provides

some indication of how good the configuration is. The distinction is subtle. On one hand, we do want the score to reflect

a suitable measure of the attribute (e.g., performance measured in terms of throughput, latency, and other important

aspects); on the other, reducing the score to be simply a scaled version of the throughput is of little value, since it

too will require detailed modeling. We want to avoid the need for detailed modeling in the context of configuration

health because not only it requires a very specific measure, but it also is generally intractable due to a large number of

configuration parameters, their interdependencies, and their complex influence on the chosen measure.

Because of how the scoring system is targeted, it necessarily carries some level of non-specificity both in the measures

and the values. In particular, with a mid-score (e.g. 1.0) considered as a nominal score, it is the significant deviation

from the mid-score that is important, not the precise value. The simplicity in defining and evaluating the score is crucial

for scalability in dealing with large configuration spaces. Such non-specificity is inherent to any scoring system, in

particular, the well-known Configuration Vulnerability Scoring System (CVSS) [10] that has been used by the security

community for quite some time and was the origination motivation for CHeSS. Note that CVSS scores are assigned

entirely manually based on the "domain knowledge" which consists of both observed and expected impact of a security

vulnerability.

The concept in CHI should not be regarded as yet another performance prediction model or competitor to existing

state of art methodologies as listed in section 7.1 . The main goal of the CHI is to generate important insights into

relationship between the observed behavior (mostly performance in our paper) and configuration objects and express

such a score as a health index. As CHI is not a performance prediction model, and in absence of any direct literature, we

used the "prediction accuracy" of computing HI (hence, indirect observed behavior O) for an unseen set of configurations.

We provide such evaluations comparing CHI with other related art in the results section.

2.2 Configuration Specification

Configurations (left side of Fig. 1) are generally specified as name-value pairs defined in configuration files and stored in

service specific format (e.g. json, xml, text file or local/remote repository). Service functionality is an abstract term that

can take various forms based on users or context, either for processing data, securing services, energy consumed, etc.

An a priori scoring of the configuration, as envisioned by CHI, will aid the user-community (administrators, designers,

developers, end-users, etc.) to gain an insight into the strength or weakness of the configuration beforehand, and hence

minimize any costly after-facts.

A configuration file for the service includes a set of configuration "objects" and their settings. Configuration objects

are often organized as a hierarchy, with a top-level object representing a feature (QoS, VPN, or VLAN in a router)

or component (e.g., namenode & datanode in HDFS), with lower level objects breaking it into finer aspects. For

example, a router would have top-level objects for configuration settings of Layer2, Layer3, possibly Layer4, Security,

Authentication, etc., each of which has further objects down below. For example, the Layer2 setting includes the

spanning-tree protocol setting, with various VLAN settings under that, etc. Configuration settings serve a variety of

purposes. Many of them are used for purposes other than the "health"; for example, the EXT4 file system has options for

Manuscript submitted to ACM

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Performance Health Index for Complex Cyber Infrastructures 5

folding the case in directory searches, enabling extended attributes, support for huge files, etc. Others affect the service

health directly in terms of some attributes, e.g., enabling encryption that affects security and performance [37]. However,

the health impact of many configuration settings is not obvious and requires varying levels of domain knowledge

to assess, e.g., in EXT4, enabling metadata checksum increases resilience, and enabling extent trees results in better

performance.

As an example, in CHeSS [40], we considered routers in a commercial data center with complex and elaborate

working configurations. The largest configuration file here had 22,000 lines and operated on an object hierarchy up to

7 levels deep. Thus the exercise provides a good insight into the usefulness of a scoring system for complex systems

where detailed observational data is often spotty or simply unavailable (e.g., the impact of key length on security)

and detailed quantitative modeling difficult. Given the intricacies of routing protocols and complex features involving

VLANs, authentication, etc., we believe that weights assigned by highly experienced administrators can be regarded as

good a depiction of "ground truth" as one might reasonably obtain in such an environment.

A configuration file 𝑐 of a service contains several CVs henceforth denoted as 𝑃𝑚, 1 ≤ 𝑚 ≤ 𝑀 . Each CV is a

tuple representing the name and value pair (𝑃 : 𝑝). Depending on the name/value tuple, the configuration object can

contribute to one or more health attributes of the service. For example in Table. 2, a configuration file 𝑐4 contains a

configuration object 𝑃1 : {𝑚𝑒𝑚 = 32}, which states that 32GB of memory is allocated. This statement can contribute

towards the performance attribute by factor 𝑝1 and security attribute by factor 𝑠1. Similarly, another configuration

object 𝑃2 : {𝑐𝑜𝑟𝑒𝑠 = 4} may state CPU resource as 4 cores and contribute towards performance attribute as 𝑝2 and

availability attribute as 𝑎2. Thus, each configuration object 𝑃 influences the service behavior and contributes to one or

more attributes (denoted as
®ℎ = {𝑝, 𝑠, 𝑎 · · · }). The goal of this research to identify these unknowns (i.e. 𝑝1, 𝑝2, 𝑠1, 𝑎2,

etc.) based on the observable behavior of the service with the configuration file (e.g. observed performance in Table. 2,

𝑂1=112Kbps).

2.3 Challenges in Assigning Scores

The key problem in defining CHI is two fold: (a) estimation of scores (or CHI values) for leaf-level objects in the

configuration object hierarchy, and (b) composition of the scores along the hierarchy to determine a score of any

arbitrary object. Here (a) can range from a direct assignment of a score by a knowledgeable user/administrator up to an

entirely automated estimation. We discuss this aspect in some detail, starting with an entirely manual assignment. We

also discuss the composition method used in CHeSS and continue to use the same here as well.

2.4 How can CHI help? Some preliminary work

In CHeSS, we focus on CHI in general and evaluated a concrete example relative to three attributes, namely availability

(A), security (S), performance (P), for a large commercial routing network. Since the impact of configuration parameters

on attributes like availability or security is difficult to determine experimentally, the assignment of scores (or weights)

to the leaf-level objects was done by experienced router administrators and then aggregated to estimate the weight or

score of an object. This was done recursively from leaves to the root, the end result being the overall score for the router.

An example of such an aggregated result is shown as a red asterisk point in Fig. 1, to reflect the overall aggregated score

of the device. It is highly desired that such an aggregate score (the asterisk point) lie on the top right corner showing

highly desirable configuration, i.e high values of ®𝐻 . However, it is not just the overall score, but intermediate scores

that are also important in assessing the quality of the settings.

Manuscript submitted to ACM

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

6 Sanjeev Sondur and Krishna Kant

It is widely understood that the performance does not increase linearly with the resources thrown at the problem [2]

because of the various bottlenecks such as queuing, synchronization, and other delays. For example, if we increase CPU

speed, the performance does not increase proportionately due to limitations that may range from CPU microarchitecture

(e.g., load/store buffers, bubbles in the pipeline, etc.) to caching to memory bandwidth limitations, to IO bottlenecks, etc.

Hence, it is important to model the contribution of CVs w.r.t rate of increase plus a point of diminishing return, thus

giving us a concave-convex relationship.

There is a fine distinction between the CHI approach and plain curve fitting to the data. Instead of simply observing

how the data looks like and fitting the best possible curve to it, we start from the domain knowledge end, which tells

us about the general nature of the behavior (e.g., monotonic increase with diminishing returns). Such characteristics

are well known to domain experts and can be readily specified by them. Since the domain knowledge cannot tell us

what the rate parameters should be in such a behavior, we determine those from the data. The key difference is that

we expect this behavior to hold substantially beyond the range for which the data is available. In contrast a purely

data-driven approach simply follows the data along with its extrapolation beyond the given data range and increasing

lack of confidence (i.e., widening confidence intervals).

The Health Index (HI) metric of the configuration file is expressed as a vector of impacted attributes such as: security

(𝑆), availability (𝐴), manageability (𝑀), performance (𝑃), and functionality (𝐹). That is,

®𝐻𝐼 = {𝑆,𝐴,𝑀, 𝑃, 𝐹, · · · } (1)

Fig. 1. CHeSS Framework [40]

Given the weight, we express the Health Index

(H) metric of a configuration as a vector of impacted

attributes. As shown in Fig 1, the framework takes

the configuration file as input, analyses the con-

figuration statements (CVs, aka configuration ob-

jects) for their influence on different attributes, and

quantifies the H metric at all levels of the object

hierarchy. The right hand side of Fig 1 illustrates a

sample result pictorially depicting the health of the

configuration. Here the vector H consists of only three attributes 𝑃,𝐴, 𝑆 (performance, availability, security), for ease of

displaying in a 3D plot. Each axis shows the upper and lower bounds for the respective attributes 𝑃,𝐴, 𝑆 . Each blue

dot refers to the health index ℎ𝑚𝑛 of a configuration object CV. A point closer to the upper bounds indicates a higher

health index, and hence a good configuration or highly desired configuration. One such example could be a security

configuration set to high encryption key length, showing the blue dot with a high health index on the security scale

(vertical axis). In Fig. 1, different blue dots correspond to different top level configuration objects. The figure clearly

shows that some objects are quite poorly configured, especially with respect to availability and security. The red asterisk

mark (*) refers to the aggregated health index 𝐻𝐼 of the configuration (aggregation as explained in section 2.5). Such a

depiction indicates the value of CHI concept and allows the administrators to focus on objects whose configuration

needs to be improved.

®𝐻𝐼 = {P,A,S} = {1.3, 1.2, 0.9}

Manuscript submitted to ACM

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Performance Health Index for Complex Cyber Infrastructures 7

2.5 Aggregation of CHI Scores

For the rest of this paper, we will associate ®𝐻 with a single attribute representing performance P 3
, and health index (

®ℎ)
of individual configuration object (𝑃) is marked as a single metric ℎ. The overall metric (or quality of each attribute in H)

is represented as the geometric mean of all the contributing attributes (weights)
®ℎ𝑖 ’s from all the configuration objects

𝑃𝑖 . The aggregation was done using simple geometric means since the geometric mean preserves relative scaling and is

tolerant of occasional erroneous weight assignment in a large hierarchy. The geometric means provides a measure of

the configuration health index (CHI) at each level and ultimately for the top-level objects.

The dependencies are considered in the modeling indirectly because CHI estimates the HI parameters from the

observed behavior. However, the error in the overall estimate (following the geometric mean) is minimized in order

to determine the assumed behavioral parameters of all of the CVs (Eq. 2 & 8). This ensures that the dependencies are

automatically considered by the CHI estimation model. The 𝐻𝑛 of the configuration file 𝑐𝑛 (and hence the service) is

then given as:

𝐻𝑛 =
𝑀

√√√(
𝑀∏

𝑚=1

(ℎ𝑛𝑚)
)

or alternatively,

𝑙𝑜𝑔(𝐻𝑛) =
1

𝑀

𝑀∑
𝑚=1

𝑙𝑜𝑔(ℎ𝑛𝑚) (2)

2.6 Exploiting Domain Knowledge for Performance CHI

The key challenge in such an approach is to estimate the values of ℎ𝑖 ’s. With most attributes, including security,

availability, manageability, etc., it is generally infeasible to set the CVs to “all” desired values and experimentally

determine their impact. Instead, one must estimate the impact via some mathematical model calibrated based on some

limited/basic data that might be available. For example, availability (or reliability) modeling generally uses a simple

compositional model based on the availability of individual components. Similarly, we may have some quantification of

the attack probabilities, which along with suitable attack graph models can give us a quantification of the security of

the system. The performance attribute is unique in this respect in that it is possible (at least in theory) to set the CVs to

some values and measure the performance (or compute it based on a model calibrated from the observed behavior).

This brings in the possibility of at least a partially data-driven determination of the scores, and thereby reduces the

amount of manual effort required on part of the domain experts.

However, we cannot immediately swing to the other extreme and claim that there is no need for domain expertise,

and everything can be done in a purely data-driven manner. In fact, there are numerous hurdles in making a data-driven

approach work and we show in section 5 that it can often lead to misleading results; instead, an approach that judiciously

uses expert input can not only improve the quality of the results but also do this with much smaller amounts of data.

2.7 Limitations of Data-driven approach

The key hurdle in a data-driven approach that is often ignored is the difficulty in obtaining adequate quality and

quantity of data from a production system. Except in the case of inadvertent mistakes, the configurations that the

3
Performance is shown as an important attribute by Westermann et al. [48]

Manuscript submitted to ACM

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

8 Sanjeev Sondur and Krishna Kant

administrators are willing to use in a production system are extremely limited – ones that work well. Thus the available

data cannot even begin to cover the full range of feasible or even desirable settings. Thus even if we have a huge

amount of collected data, its diversity in terms of coverage of the configuration space is extremely limited. Although

most production systems do have a small test cluster where any configuration settings are possible, translating either

the configuration settings or the results from the test system to the production system (or vice versa) is often either

infeasible or involves guesswork (and hence significant errors in the data obtained). Thus the basic requirement of a

purely data-driven approach, namely, the ability to generate correct and diverse data covering significant portions of

the state space, is usually not met in practice. Unfortunately, the current enthusiasm for applying AI/ML techniques

often overshadows these considerations [46].

Even if arbitrary data gathering is permitted (e.g., on a separate cluster), the effort and time required to cover the

configuration space make diverse data generation very difficult, as we experienced in our effort to generate CSG

data [38]. This is the main motivation for our performance CHI to be expressed as a scoring system, rather than an exact

performance characterization. It is also the motivation to exploit domain knowledge and use experimental data sparingly

rather than following a purely data-driven approach which generally requires extensive amounts of data. Being a

coarse-granularity scoring system, the performance CHI is concerned with distinguishing, say, a well-performing

configuration from a poor one, as opposed to attempting to do a precise estimation of all relevant CVs for near-optimal

performance. Nevertheless, for convenience, we view the performance CHI as a continuous function of the parameter

values and evaluate it using both the available data and the domain knowledge. This allows us to substantially reduce

the data requirements and yet obtain much better results than a purely data-driven approach.

The key issue then is how can the domain knowledge be expressed and exploited? It is clear that the input provided

by the experts must remain rather small even for large problems. Also, we should not expect experts to provide numbers

(e.g., the "weights" as in CHeSS) since people tend to make mistakes in providing numbers, and the numbers provided

may depend on extraneous factors such as the mood of the person. Instead, we should largely expect experts to provide

their insights regarding the system. These insights can often be summarized in the following types of questions:

(1) Based on the knowledge about the system, which CVs are likely to be at least moderately important for deciding

the system outcome?

(2) Are certain CVs related by experience based rules of thumb, either precise ones (e.g., each web-server talking to

the database needs 10 more DB threads) or fuzzy ones (e.g., each CPU core would add 100-120 MB/s in disk IO

requirements)?

(3) Are certain CVs restricted to a certain small set of values (e.g., memory of 32GB, 48GB and 64GB only)?

(4) If the performance generally increases with respect to a CV (e.g., throughput vs. hardware resource amount), is

it likely to show a slow decline beyond some point
4
due to increasing overhead or resource contention (we are

not asking the expert what that point is)?

The list above is not intended to be comprehensive but will be used in this paper. A similar approach can be used with

additional insights.

One concern that always comes up with respect to human involvement is what if the provided insights are incorrect?

This can be addressed to some extent by performing sanity checks based on the available data; for example, if we have

a decent amount of data, we could do the principal component analysis (PCA) to determine if the importance provided

by PCA generally jives with the one provided by the expert. However, we should not lose sight of the fact that a purely

4
Point of diminishing return

Manuscript submitted to ACM

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Performance Health Index for Complex Cyber Infrastructures 9

data-driven approach is no panacea, and itself comes with many hazards such as spurious relationships, variations that

are opposite to the expected variations, elimination of important variables, overfitting, etc. We demonstrate in this

paper that by using the domain knowledge along with the data, we can get more robust results and avoid some of the

pitfalls of the pure data-driven approaches.

The key area of our research is to produce important insights of the various CVs (𝑃 ’s) on the observed metric (𝑂 ’s). As

CVs can span a wide-dimensional space, a detailed modeling of over 100s of CVs either using a mathematical, simulation,

or other technique is laborious (if not impossible) [23, 25, 28, 37, 51]. Further, such one-off models would suffer from

robustness and over-fit, i.e. we need to re-do the model for any change in the configuration space.

Authors in Ref [2] support our observation, wherein, the accurate modeling of application performance and building

a model that works for a variety of applications and Cloud configurations can be difficult because the knowledge of the

internal structure of specific applications is needed to make the model effective. Because of these difficulties, the goal of

CHI is to simplify such modeling and discover some important insights into the configuration settings.

2.8 Research Goal

The design goal of CHI is to produce a scoring system, that can give an insight into the configuration space. That is, CHI

should: (i) discover how a CV influences the behavior (i.e. outcome), (ii) give the rate of increase of such an influence,

(iii) show the cut-off point for diminishing returns (if any), and (iv) show the rate of decay beyond the cut-off point.

This effect
5
is shown as a convex-concave shaped graph in Fig. 3 below. Instead of building a detailed performance

model, the objective is to discover the influence of various CVs on the observable outcome.

With these goals, we formulate the following research questions.

(R1) Discover the influence of the CV 𝑃 ’s on the health index ℎ’s, including the rate of influence, the point of

diminishing return or cut-off point (if any), and the rate of decay (beyond the cut-off point).

(R2) Correlate the H (computed from various ℎ’s) of a configuration file to the observed operational metric 𝑂 (e.g.

performance in our case).

(R3) Determine the𝐻𝑛𝑒𝑤
of a new (unseen data) configuration file such that the new𝐻𝑛𝑒𝑤

should reflect the “expected

behavior” 𝑂𝑛𝑒𝑤
of the new configuration file.

Note that while (R1) & (R2) are the primary goal of this work, (R3) is a natural extension & indirect benefit obtained

from discovering the CHI metrics. As CHI is ’not’ a performance prediction model, and in absence of any direct literature,

we used the "prediction accuracy" of computing HI in (R3) (hence, indirect observed behavior O) for an unseen set of

configurations. We compare such metrics with several available literatures and show that CHI succeeds in characterizing

configuration dependence while several of the well advertised methods do not.

3 SOLUTION DESIGN

The purpose of this research is to get an apriori metric to express the health of the configuration file relative to the

performance.

3.1 CHI Framework

The CHI framework to discover the health index (𝐻𝑛 ’s) of the configuration files (𝑐𝑛 ’s) is shown in Fig. 2. The

configuration objects (𝑃𝑚 ’s) in the configuration file are first pre-processed and normalized.

5
The rate of increase plus point of diminishing return

Manuscript submitted to ACM

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

10 Sanjeev Sondur and Krishna Kant

Fig. 2. CHI Framework

Table 1. Abstract Representation of Configuration Files with Geomean (Computed) and Operational Data (Observed)

Features (Parameter/Value Weights or Config. Objects) GeoMean Oper.Data
P1 P2 P3 P4 P5 P6 P7 P.. P.. 𝐻𝐼𝑛 𝑂𝑛

S
a
m
p
l
e

C
o
n
fi
g
F
i
l
e
s 𝑐1 𝑝𝑚𝑛 𝑝.. 𝑝.. 𝑝.. 𝑝.. 𝑝𝑚𝑛 𝑝𝑚𝑛 𝑝𝑚𝑛 𝑝𝑚𝑛 𝐻𝐼1 𝑂1

𝑐2 𝑝.. 𝑝𝑚𝑛 𝑝𝑚𝑛 𝑝𝑚𝑛 𝑝.. 𝑝.. 𝑝.. 𝑝.. 𝑝𝑚𝑛 𝐻𝐼2 𝑂2

𝑐3 𝑝𝑚𝑛 𝑝.. 𝑝𝑚𝑛 𝑝.. 𝑝𝑚𝑛 𝑝.. 𝑝𝑚𝑛 𝑝𝑚𝑛 𝑝.. 𝐻𝐼3 𝑂3

𝑐4 · · · 𝐻𝐼4 𝑂4

𝑐5 · · · 𝐻𝐼5 𝑂5

Table. 1 shows an abstract representation of the sample configuration data, with rows illustrating the various

configuration files 𝑐𝑛 , and columns showing the CVs of the configuration 𝑃𝑚 with the respective observed metric 𝑂𝑛 .

Each cell 𝑝𝑛𝑚 represent a name/value pair for the configuration files. Table. 2 shows a randomly selected (real-world)

example of the CSG configuration file with the associated observed metric (i.e. performance in Bits/sec shown in the last

column as 𝑂𝑖). Few attributes (storage IO, metadata size, cache space, metadata space, log space) are enumerated using

bucketization shown in Table. 6. The normalized values of the configuration objects and corresponding normalized

operational metrics form the basic input to the framework. A sample of a normalized version of the input files is

illustrated in Table. 3. Domain experts or service specifications define the boundaries of the configuration object, i.e

𝑃 (𝑚𝑖𝑛)
& 𝑃 (𝑚𝑎𝑥)

. As part of pre-processing and to keep the format of all input data uniform, it may sometimes be

necessary to fill in any undefined/missing values (shown as blank cells in Table. 1). If necessary feature engineering

methods have to be incorporated to enrich or supplement an existing feature (i.e configuration object 𝑃𝑚) with a new

feature (i.e configuration object 𝑃 ′𝑚).

3.2 Estimating Health Index From Configuration Data

Our data D is a set of distinct 𝑁 configuration files, or "rows", say 𝑐1, .., 𝑐𝑁 with configuration 𝑐𝑛 , 𝑛 ∈ 1..𝑁 and its

corresponding observed output 𝑂𝑛 (e.g., performance) (See sample in Table. 1). A configuration is defined by a set

of𝑀 CVs (or "columns"), denoted 𝑃1, .., 𝑃𝑀 . That is, each configuration 𝑐𝑛 is a vector of𝑀 ‘values’ for CVs 𝑃1, .., 𝑃𝑀 ,

henceforth denoted as 𝑝𝑛1, .., 𝑝𝑛𝑀 . We postulate the health index𝐻𝑛 for each 𝑐𝑛 , which itself is computed as a geometric

mean of H of individual CVs (Eq. 2). The H for an individual CV is denoted as ℎ𝑛𝑚 ,𝑚 = 1..𝑀 , for each CV value 𝑝𝑛𝑚 .

Manuscript submitted to ACM

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

Performance Health Index for Complex Cyber Infrastructures 11

Table 2. CSG Configuration File from Ref [38] with Operational Data (Observed)

Features (Parameter/Value Weights or Config Objects) Oper.Data
Config

File

Cores Core

Speed

Mem.

Size

Mem.

BW.

Storage

IO

No.of

Files

File

Size

Metadata

Size

Cache

Space

MetaData

Space

Log

Space

Bits/sec.

𝑐4 4 1.8 32 1.60 3 10000 4KB 2 1 1 2 112166

𝑐16 4 1.8 32 1.60 3 10000 256KB 2 5 3 3 6662268

𝑐31 4 1.8 32 1.60 3 1000 1MB 1 5 3 3 54852372

𝑐33 4 1.8 32 1.60 3 1000 10MB 2 2 2 1 63372836

𝑐62 8 2.1 32 2.10 1 10000 256KB 2 2 1 3 10091093

𝑐69 8 2.1 32 2.10 1 10000 1MB 1 3 2 1 48031772

𝑐76 8 2.1 32 2.10 1 10000 1MB 2 2 1 3 36488192

𝑐86 8 2.1 32 2.10 1 1000 10MB 1 5 3 3 261301724

𝑐96 8 2.1 32 2.10 1 200 1GB 1 3 2 1 304349283

Table 3. CSG Configuration File with Normalized Data

Features (Parameter/Value Weights or Config Objects) - Normalized Oper.Data
Config

File

Cores Core

Speed

Mem.

Size

Mem.

BW.

Storage

IO

No.of

Files

File

Size

Metadata

Size

Cache

Space

MetaData

Space

Log

Space

Bits/sec.

𝑐4 0.07 0.30 0.33 0.20 0.60 0.80 0.36 0.40 0.00 0.02 0.04 0.50

𝑐16 0.07 0.30 0.33 0.20 0.60 0.80 0.54 0.40 0.13 0.19 0.09 0.68

𝑐31 0.07 0.30 0.33 0.20 0.60 0.60 0.70 0.20 0.13 0.19 0.09 0.77

𝑐33 0.07 0.30 0.33 0.20 0.60 0.60 0.70 0.40 0.01 0.04 0.02 0.78

𝑐62 0.20 0.45 0.33 0.45 0.20 0.80 0.54 0.40 0.01 0.02 0.09 0.70

𝑐69 0.20 0.45 0.33 0.45 0.20 0.80 0.60 0.20 0.02 0.04 0.02 0.77

𝑐76 0.20 0.45 0.33 0.45 0.20 0.80 0.60 0.40 0.01 0.02 0.09 0.76

𝑐86 0.20 0.45 0.33 0.45 0.20 0.60 0.70 0.20 0.12 0.19 0.09 0.84

𝑐96 0.20 0.45 0.33 0.45 0.20 0.46 0.90 0.20 0.02 0.04 0.02 0.85

𝑀 Number of CVs

𝑁 Number of configuration files

𝑃𝑚 𝑚𝑡ℎ
CV in a configuration file (0 ≤𝑚 ≤ 𝑀)

𝑐𝑛 𝑛𝑡ℎ configuration file (0 ≤ 𝑛 ≤ 𝑁)

𝑝𝑛𝑚 name/value pair𝑚 of configuration file 𝑛

ℎ𝑛𝑚 health index (aka weight) of 𝑝𝑛𝑚

𝐻𝑛 Health Index of 𝑛𝑡ℎ configuration file

𝑂𝑛 Observed Metric of 𝑛𝑡ℎ configuration file

𝐿𝑠𝑑 Strong dependent CVs

𝐿𝑤𝑑 Weakly dependent CVs

𝐿𝑢𝑛 Unimportant ones

𝐿 𝐿 = 𝑀 − 𝐿𝑠𝑑 − 𝐿𝑤𝑑 − 𝐿𝑢𝑛 dominant CVs

𝑓𝑚𝑘 () Relationship function between CVs 𝑝𝑚 & 𝑝𝑘
𝑠𝑛𝑚 Normalized value of 𝑝𝑛𝑚

Table 4. Nomenclature used in the paper. Fig. 3. Sample CV Value vs. Health Index relationship

Our goal is to estimate ℎ𝑛𝑚 ’s, and hence𝐻𝑛s, compatible with the observed outputs𝑂𝑛 . We pose this as an optimization

problem. The assumptions and constraints are as follows.

(I1) Of the𝑀 CVs, 𝐿𝑠𝑑 < 𝑀 CVs may be strongly dependent on others, and we assume that this relationship, denoted

as |=. Thus, if parm 𝑃𝑚 |= 𝑃𝑘 , then 𝑝𝑛𝑘 is functionally determined by 𝑝𝑛𝑚 for all 𝑛, i.e., 𝑝𝑛𝑘 = 𝑓𝑚𝑘 (𝑝𝑛𝑚) where
𝑓𝑚𝑘 is a known analytic function that transforms column𝑚 to column 𝑘 (independent of the row index 𝑛).

Manuscript submitted to ACM

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

12 Sanjeev Sondur and Krishna Kant

(I2) In addition, another 𝐿𝑤𝑑 < 𝑀 CVs may be weakly dependent on others, and we also assume that this relationship,

denoted as ↦→, is given by the experts. Thus, if parm 𝑃𝑛 ↦→ 𝑃𝑘 , then the value 𝑝𝑛𝑚 restricts the choice of values

for 𝑝𝑛𝑘 to a small range around some value, i.e.,

𝑝𝑛𝑘 = 𝑓𝑚𝑘 (𝑝𝑛𝑚) (1 + 𝑟𝑘), 𝑟𝑘 ∈ [−𝑅𝑘 ..𝑅𝑘], 𝑘 ∈ L𝑤𝑑 (3)

where 𝑟𝑘 represents the uncertainty as a fraction. Here𝑅𝑘 ∈ 0..1 is a small (known) fractional number representing

the boundaries of the uncertainty. For example, 𝑅𝑘 = 0.1 means that the value of 𝑝𝑛𝑘 can vary ±10% around the

value determined by the function 𝑓𝑚𝑘 .

(I3) The relatively important CVs are usually known to the experts from experience or could be obtained using a

statistical technique like principle component analysis (PCA). PCA assumes orthogonality and linear combination.

CHI does not use the direct PCA linear relationship, rather it is used to validate the experts’ opinion against

PCA results to separate unimportant parameters from important parameters. Others are better eliminated

since marginally important CVs only tend to increase the noise in the estimations [39]. We assume that of

the 𝑀 − 𝐿𝑠𝑑 − 𝐿𝑤𝑑 primary CVs, 𝐿𝑢𝑛 are unimportant and hence eliminated. Thus, we are left with only

𝐿 = 𝑀 − 𝐿𝑠𝑑 − 𝐿𝑤𝑑 − 𝐿𝑢𝑛 CVs. The normal 𝐿 · · · parameters introduced above represent the sizes of the sets L · · ·
(i.e. 𝐿 · · · = |L · · · |).

(I4) Based on the last few points, we only need to consider 𝐿 CVs in the formulation. For convenience, we denote the

corresponding set of variables of different types as L.. , i.e., L𝑠𝑑 is set of strongly dependent CVs, L𝑤𝑑 is set of

weakly dependent variables, etc.

(I5) We postulate two different forms of functions ℎ𝑛𝑚s that we want to estimate – monotonic and unimodal. Of

the 𝐿 CVs, we assume that 𝐿𝑚𝑜 is monotonic and 𝐿𝑢𝑚 is unimodal. As before, we represent the corresponding

CV sets as L𝑚𝑜 and L𝑢𝑚 respectively. This behavior is illustrated as a “convex-concave” graph in Fig. 3, with

monotonic behavior depicted in area (A) and unimodal behavior (diminishing returns) beyond point 𝑝 (𝑚𝑜𝑑𝑒)
in

area (B).

As explained earlier, we assume that the minimum and maximum values of the CV, denoted 𝑝
(𝑚𝑖𝑛)
𝑚 and 𝑝

(𝑚𝑎𝑥)
𝑚

respectively are defined by experts or available from the experiments. We define 𝑝
(𝑚𝑖𝑛)
𝑚 as the value for which

ℎ𝑛𝑚 = ℎ
(𝑚𝑖𝑛)
𝑛𝑚 . Now we have two cases:

Monotonic: ℎ𝑛𝑚 increases monotonically with 𝑝𝑛𝑚 for CV 𝑚 and when 𝑝𝑛𝑚 = 𝑝
(𝑚𝑎𝑥)
𝑚 , ℎ𝑛𝑚 = ℎ

(𝑚𝑎𝑥)
𝑛𝑚 . We

expect the relationship to be concave (i.e., follow the law of diminishing returns). We capture this using the

equation:

𝑠𝑛𝑚 =
𝑝𝑛𝑚 − 𝑝 (𝑚𝑖𝑛)

𝑚

𝑝
(𝑚𝑎𝑥)
𝑚 − 𝑝 (𝑚𝑖𝑛)

𝑚

(4)

ℎ𝑛𝑚 =
1 − 𝑒−𝜂𝑚𝑠𝑛𝑚

1 − 𝑒−𝜂𝑚 , 𝑚 ∈ L𝑢𝑚, 𝑠𝑛𝑚, 𝑚 ∈ L𝑚𝑜 (5)

where 𝜂𝑚 is a predefined positive parameter that controls the growth rate.

Unimodal: Here we assume the same equation as above, except that the maximum happens at the value

𝑝
(𝑚𝑜𝑑𝑒)
𝑚 < 𝑝

(𝑚𝑎𝑥)
𝑚 . Beyond 𝑝

(𝑚𝑜𝑑𝑒)
𝑚 , we can assume that ℎ𝑛𝑚 decreases linearly with maximum fractional

degradation of 𝛾𝑚 < 1. (Generally, 𝛾𝑚 ≪ 1)

Manuscript submitted to ACM

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

Performance Health Index for Complex Cyber Infrastructures 13

ℎ𝑛𝑚 =
1 − 𝑒−𝜂𝑚𝑠𝑛𝑚

1 − 𝑒−𝜂𝑚 , 𝑚 ∈ L𝑢𝑚, 𝑠𝑛𝑚 ≤ 𝑝 (𝑚𝑜𝑑𝑒)
𝑚 (6)

ℎ𝑛𝑚 = 1 − 𝛾𝑚𝑠𝑚𝑛, 𝑚 ∈ L𝑢𝑚, 𝑠𝑛𝑚 > 𝑝
(𝑚𝑜𝑑𝑒)
𝑚 (7)

where

𝑠𝑛𝑚 =
𝑝𝑛𝑚 − 𝑝 (𝑚𝑜𝑑𝑒)

𝑚

𝑝
(𝑚𝑎𝑥)
𝑚 − 𝑝 (𝑚𝑜𝑑𝑒)

𝑚

Fig. 3 represents the relationship represented in Eq. 5, and Eq. 7 and depicts an example behavior of a CV. ℎ𝑛𝑚

for the CV will increase monotonically up to a limit 𝑝 (𝑚𝑜𝑑𝑒)
, and then linearly decreases beyond 𝑝 (𝑚𝑜𝑑𝑒)

. We now

have to predict the ℎ𝑛𝑚 contribution of the CV 𝑝𝑚 given these boundaries. The total number of unknowns is thus

2𝐿 + 𝐿𝑤𝑑 + 𝐿𝑢𝑚 , and we expect that the number of rows 𝑁 (i.e., configurations for which output is known) will be

significantly larger than the𝑀 .

Objective: The objective now is to determine the unknowns introduced above, i.e., 𝑟𝑘 , 𝑘 ∈ L𝑤𝑑 , and 𝜂𝑚 ,𝑚 ∈ L𝑚𝑜

and 𝛾𝑚 ,𝑚 ∈ L𝑢𝑚 to minimize the mean square error (MSE) between the estimated 𝐻𝑛 ’s and observed output 𝑂𝑛 ’s.

MSE is given as:

𝑀𝑆𝐸 =
1

𝑁

𝑁∑
𝑛=1

(𝐻𝑛 −𝑂𝑛)2

or alternatively,

𝑀𝑆𝐸 =
1

𝑁

𝑁∑
𝑛=1

(𝑙𝑜𝑔(𝐻𝑛) − 𝑙𝑜𝑔(𝑂𝑛))2 (8)

We discover the individual health index (ℎ𝑚 ’s) of the configuration objects 𝑃𝑚 ’s to minimize the error between

computed H ’s and observed metric 𝑂’s (Eq. 8) and thereby determine the 𝜂’s and 𝛾 ’s as defined in Eq. 5 and Eq. 7. An

optimal solution should minimize Mean Square Error (MSE, ideally zero), thereby relating the health index H ’s as close

as possible to the observed metric 𝑂’s. We denote this estimation error (𝐻 −𝑂) as a measure of how far our health

index 𝐻 is from the true normalized performance 𝑂 . In our results, we show the estimation error as the MSE, since it

takes into account both the bias and the variance of the estimator [45].

3.3 Computing CHI

Fig. 4 and Eqns.(9 – 12) illustrate the concept underlying the computation of CHI. With inputs about the CV boundaries

(𝑃 (𝑚𝑖𝑛)
& 𝑃 (𝑚𝑎𝑥)

) and the pre-processed normalized configuration files, the CHI framework in Fig. 2 computes the

health index ℎ𝑛𝑚 using a non-linear gradient descent regression model to achieve the desired objective (i.e. minimize

the MSE). The regression used by CHI is intended to estimate the parameters associated with the assumed forms of

the functions. MSE is hierarchically dependent on other variables as explained in section 3.2 (item (I1) to item (I5)).
The gradient of MSE (∇𝑀𝑆𝐸) w.r.t individual dependent variable 𝜅𝑛𝑚 is represented in Eq. 9, and split into three

components: (i) MSE is a function of H (hence, 𝜕𝑀𝑆𝐸/𝜕𝐻), (ii) H in turn, depends on individual ℎ𝑛𝑚 (hence the second

part: 𝜕𝐻𝑛/𝜕ℎ𝑛𝑚), and (iii) individual ℎ𝑛𝑚 is a function of either 𝜂𝑚 or 𝛾𝑚 (hence the final derivative). To minimize MSE,

we employ a gradient descent algorithm, with each iteration calculating a new state 𝜅 computed as a function of 𝛼 &

∇𝑀𝑆𝐸 as shown in Eq. 11 (where 𝛼 represents the learning rate).

Manuscript submitted to ACM

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Sanjeev Sondur and Krishna Kant

∇𝑀𝑆𝐸 =
𝜕𝑀𝑆𝐸

𝜕𝜅𝑛𝑚
=
𝜕𝑀𝑆𝐸

𝜕𝐻𝑛
∗ 𝜕𝐻𝑛

𝜕ℎ𝑛𝑚
∗ Ψ𝑛𝑚 (9)

where Ψ𝑛𝑚 =


𝜕ℎ𝑛𝑚
𝜕𝜂𝑛𝑚

, if 𝑠𝑛𝑚 ≤ 𝑝 (𝑚𝑜𝑑𝑒)
𝑚

𝜕ℎ𝑛𝑚
𝜕𝛾𝑛𝑚

otherwise

(10)

𝜅𝑛𝑚 ← 𝜅𝑛𝑚 − 𝛼∇𝑀𝑆𝐸 (11)

where 𝜅𝑛𝑚 =


𝜂𝑛𝑚 if 𝑠𝑛𝑚 ≤ 𝑝 (𝑚𝑜𝑑𝑒)

𝑚

𝛾𝑛𝑚 otherwise

(12)

The CHI computation unit in Fig. 4 represents the calculation of the H (Eq. 2). The unit regresses and computes 𝐻 ,

∇𝑀𝑆𝐸, & 𝜅𝑛𝑚 (as given above). An error function computes the difference between “computed” 𝐻𝑛 and observed

operational metric 𝑂𝑛 , and updates the ∇𝑀𝑆𝐸 & 𝜅𝑛𝑚 for the next states (Eq. 11). The algorithm terminates after it

reaches a predefined termination condition (either expressed as the number of iterations or on achieving the desired

MSE). At termination, the algorithm persists the ‘discovered’ relationships 𝜂𝑚 ’s & 𝛾𝑚 ’s of the configuration object 𝑃𝑚 ’s

in the local repository and achieves our research goals (R1) & (R2). Next, these relationships can be referred to in the

future to compute the 𝐻𝑛𝑒𝑤
of a “new/unseen” configuration files, giving us results for the goal (R3). In the results

section, we show the effectiveness of the algorithm in discovering the influence of 𝑃𝑚 ’s on 𝑂𝑛 ’s and the computational

accuracy of health indices (i.e. ℎ𝑚 ’s). We show that CHI (i) can discover the unknown’s given in Eq. 12 above to satisfy

the objective (minimize MSE) and, (ii) that they relate the contribution of various CVs 𝑃 : 𝑝 to the health index ℎ of the

configuration object (and indirectly to the 𝑂 ’s).

3.4 CHI Compute Unit Design

The design in Fig. 4 represents the H computation in Eq. 2, with 𝑝’s representing the configuration object values (𝑝𝑛𝑚)

and the weights (ℎ’s) are the contributions of the 𝑝𝑛𝑚 on the health index ℎ𝑛𝑚 as defined by Eq. 5, and Eq. 7. In the

traditional ML, a neuron computes an estimated output value 𝑦 equal to the weighed (𝑤) sum of the input features (𝑥),

i.e. 𝑦 = 1/𝑀 ∑𝑀
𝑚=1 (𝑤𝑚 .𝑥𝑚). Following similar concepts, we design the CHI computation unit to represent the geometric

mean H of the configuration objects in a configuration file, i.e. 𝑦 = 𝑀

√(∏𝑀
𝑚=1 𝑓 (𝑥𝑚)

)
, where 𝑓 (𝑥𝑚) represents the

health index function of the individual CV (𝑐𝑚) on the outcome. Thus, ℎ𝑚=𝑓 (𝑥𝑚) is the unknown and needs to be

learned.

CHI compute unit acts solely on the weights (ℎ𝑚=𝑓 (𝑥𝑚)) which in turn is a function of 𝜂𝑚 ’s & 𝜆𝑚 ’s. With a CHI

design as above, the required solution is the estimation of the parameters 𝜂𝑚 & 𝛾𝑚 that contribute to the (weight) health

index ℎ’s such that it minimizes the mean square error (Eq. 8). The transfer function 𝑔(𝑧) represents the non-linearity
in the model, represented a: 𝑔(𝑧) =𝑚𝑎𝑥 (𝜀, 𝑧) where 𝜀 is a small value (10

−3) to ensure a small positive gradient. This

transfer function [6]
6
ensures that ℎ𝑚 is always positive and allows the complex relationships in the data to be learned.

6
Referred in the ML literature as Leaky Rectified Linear Unit (Leaky ReLU)

Manuscript submitted to ACM

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

Performance Health Index for Complex Cyber Infrastructures 15

Fig. 4. Compute Unit

Our approach for computing Eq. 8 closely resembles Greedy

Coordinate Descent (GCD), which usually delivers better func-

tion values at each iteration in practice, though Eq. 8 comes

at the expense of having to compute the full gradient to select

the gradient coordinate with the largest magnitude [20, 22].

Although the non-linear gradient descent regression model can

be further improved with robust loss function and optimization

techniques, our approach did not venture into this area.

3.5 Identifying Unimportant CVs

It is well known that the configuration space is too huge to

explore and cover all known combinations of configuration

objects. It has been observed that the software performance functions are usually very sparse i.e. only a small number

of configurations and their interactions have a significant impact on system performance [14]. Various tools and

techniques are being explored to limit such configuration spaces [21, 33]. Most literatures agree that domain expertise

is often the best and fastest way to eliminate unwanted features (configuration objects in the problem) [21]. Instead of

relying on a pure human approach or trusting a generic algorithm to sort the important and unimportant CVs, our

approach eliminates the unimportant CVs (𝐿𝑢𝑛) with Principal Component Analysis (PCA) “assisted” domain expertise.

PCA is a dimensionality reduction technique that projects the data from its original 𝑝-dimensional space to a smaller

𝑘-dimensional subspace. By using PCA, domain experts can confirm their belief on which CVs are of importance versus

the unimportant CVs (𝐿𝑢𝑛). For example, using PCA software-analytics researchers recursively divide data into smaller

or as a preprocessor tool to reduce noise in software-related data sets [29, 38, 42].

3.6 CHI runtime & Retrain the Model

CHI run time complexity can be expressed as 𝑂 (𝑘𝑁𝑀) where 𝑘 is number of iterations, 𝑁 is number of samples and𝑀

is the number of CVs. A coordinate descent method like CHI is of interest due to its simplicity, low cost per iteration, and

efficacy [20]. For example, the learning time for CHI ranged between 10 to 25 seconds (Section 4.2.3). As the production

system undergoes configuration changes and thereby generates additional data, it is possible to refine the training of

the CHI model.

4 EXPERIMENTS AND EMPIRICAL DATA

In this section, we present the data-set used and its characteristics followed by a detailed evaluation of results. All code

was developed in Python and all evaluations were run on a MacBook Pro 2.5 GHz x 2 core Intel i7 with 16 GB memory.

4.1 Data Sets and Hyperparameters

A detailed study of system configuration and performance needs a well-defined data-set that captures the resource

allocation (i.e. configuration settings) and observed behavior (e.g. performance) under various conditions (e.g. hardware

servers, workload, etc.). There are many publicly available data sets as described by Google [35], Alibaba [12], and

other Cloud traces [1] capture large time-series data for measures such as CPU utilization, IO rates, network traffic, etc.;

unfortunately, they are not useful for us since configuration information is invariably missing. In fact, for some of the

data-sets, the configuration continues to change dynamically, but there is no information about it.

Manuscript submitted to ACM

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

16 Sanjeev Sondur and Krishna Kant

We did locate some real world data sets in [28, 36] but the configuration information is not well described, especially

for [36].We also use the CSG dataset that we have created ourselves [38]. Similar to concepts highlighted in CherryPick [2,

24] for Cloud configuration, each of our CSG configurations is represented as the number of CPUs, CPU speed per core,

memory, disk speed, and network capacity. CSG data-set has several advantages over other data-sets including (most

of all) complete control over and knowledge of the configurations used, data collected, and difficulties encountered.

This makes the CSG data much cleaner and usable than others. We obtained the data with some variations in both the

hardware setup and the workloads. Note that the hardware setting variations are generally missing from other data sets.

We have no control over the used public data-sets w.r.t data collected, variability in the workload, range of experiments,

configuration space explored, etc. and we are limited by whatever data about the HW/SW configuration is included in

the dataset. In contrast, our CSG dataset has all of these details. In evaluating CHI, we used data-sets that gave us a

variety of metrics as observed behavior such as throughput, latency, exec-time, etc. (See Table. 7). The baseline metric

used during evaluation is given in the results section.

The usable public data sets that we found for our configuration studies are listed in Table 5. We ran our CHI framework

on all of these to answer the research questions ((R1) to (R3)) discussed above. Similar to Ref [2], we use cross-validation,

where subsets of the training data can be used to check if the model will generalize well. We followed well established

practice similar to an ML approach: the complete data D (𝑐𝑛 ’s & 𝑂𝑛 ’s) is first normalized and randomly split into two

groups - train (D𝑡𝑟𝑎𝑖𝑛) and test (D𝑡𝑒𝑠𝑡). We evaluate using two cases: (i) 50%D𝑡𝑟𝑎𝑖𝑛 & 50%D𝑡𝑒𝑠𝑡 and (ii) 80% D𝑡𝑟𝑎𝑖𝑛 &

20% D𝑡𝑒𝑠𝑡 . The D𝑡𝑟𝑎𝑖𝑛 is input to the CHI model to compute and discover the unknowns 𝛾𝑚 ’s, 𝜂𝑚 ’s & ℎ𝑛𝑚 ’s of various

𝑃𝑚 ’s using the steps explained above. Validating the model against D𝑡𝑒𝑠𝑡 demonstrates the efficacy of the CHI and

helps to evaluate how the model performs on new/unseen configurations (CVs, hardware, workload, etc.).

Hyper-parameters: To maintain uniformity across all studies and test cases, we maintained the iteration limit (i.e.

epochs) to 500 and learning rate 𝛼 to 0.5 and observed that the CHI reaches a satisfactory mean square error (MSE) (i.e

min ∇ MSE) during these epochs, and there is no significant improvement afterward. The resulting ‘learnt’ values of 𝛾 ’s

& 𝜂’s of various 𝑃𝑚 ’s (from the training data D𝑡𝑟𝑎𝑖𝑛) is stored in a repository and used to calculate the new health

index 𝐻𝑡𝑒𝑠𝑡
𝑖

of the unseen test configuration from D𝑡𝑒𝑠𝑡 . We compute the error rate as the difference between computed

health index 𝐻𝑡𝑒𝑠𝑡
𝑖

representing the “expected performance” and observed performance (𝑂’s) (as given in Eq. 8). The

error rate (MSE and variance) of the newly predicted health index (𝐻𝑖 ’s vs. 𝑂𝑖 ’s) is given in Table 5 for the two split

ratios of data-set. Our focus is on understanding the influence of CVs, rather than a performance prediction model,

hence we did not venture into detailed ML evaluation metrics such as k-Fold evaluation
7
, recall, precision, etc.

Table 5. Data-set used in the paper (and associated CHI results).

Code System [Related Art] Domain

#Attrs Samples A (50/50) B (80/20)

(M) (N) MSE Variance MSE Variance

CSG
a

Cloud Storage Gateway [38] Cloud Storage 10 990 0.0121 0.0068 0.0098 0.0058

BB
b

BitBrains Datacenter [16] Virtual Machines 7 500 0.0526 0.0256 0.0475 0.0236

SS2
c

SQL Lite [30] SQL server 29 2000 0.0620 0.0311 0.0583 0.0308

SS3 Berkeley DB C [29] Embedded database 18 2000 0.0417 0.0219 0.0332 0.0177

SS8 Apache [37] Web Server 9 2000 0.0371 0.0212 0.0316 0.0167

SS10
d

Roll Sort [29] Sorting Tool 6 3840 0.1887 0.0944 0.1842 0.0932

a
[CSG] https://www.kkant.net/config_traces/CHIproject

b
[BB] http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains (RND500)

c
[SS2,SS3,SS8,SS10] https://github.com/ai-se/ActiveConfig_codebase/tree/master/RawData

d
[SS2,SS3,SS8,SS10] https://goo.gl/689Dve (RawData/PopulationArchives)

7
Though the above 80/20 test results can represent one of the k-Fold results (for k=5).

Manuscript submitted to ACM

https://www.kkant.net/config_traces/CHIproject
http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains
https://github.com/ai-se/ActiveConfig_codebase/tree/master/RawData
https://goo.gl/689Dve

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

Performance Health Index for Complex Cyber Infrastructures 17

Before outlining the evaluation (and for completeness), we briefly describe all the real world data-set used in this

paper.

4.2 Data-set Characteristics

4.2.1 Cloud Storage Gateway (CSG) Data-set. CSG is architecturally similar to Edge Computing, IoT Gateways, etc.

which are constrained by limited resource capacity and placed between the Edge/IoT/user applications and the Cloud

platform. Fig. 5 conceptually shows the CSG operation. A CSG is usually deployed at a branch office or remote location

and has access to a rather limited local compute/storage and is connected to a Cloud data center over the Internet. A

CSG essentially uses local storage as a cache for the remote Cloud storage to bridge the gap between the demand for

low-latency/high-throughput local access and the reality of high-latency connection to the Cloud with unpredictable

and usually low throughput. A sample of the design variables in the CSG experiments is shown in Table. 6 and the

complete details of experiments, hardware & configuration variation, workloads, and data-sets are given in Ref. [38].

Our study of CSG & the data-set generated is supported by Ref [2], wherein authors state that performance modeling

is complex since the running time (performance or throughput) is affected by the amount of resources in the Cloud

configuration in a non-linear way and performance under a Cloud configuration is not deterministic.

Fig. 5. Edge Computing/ Cloud Storage Gateway

Attribute No. of
Classes Example of Buckets

(Enumeration)
Core Speed (GHz) 5 1.2, 1.8, 2.4 · · ·
Memory Capacity (GB) 5 16, 32, 64 · · ·
Data cache size (GB) 7 25, 50, 100, 200, 500,

1000, > 1000

Metadata size (GB) 5 25, 50, 100, 200 & 500

Observed Performance 10 Uniform distribution

(100Kbps · · · 350Mbps)

Table 6. Sample of Design Variables for CSG data-set.

The observed performance of CSG denoted as 𝑂 , is influenced by its configuration variables (CVs), denoted as 𝑃𝑖 for

𝑖th CV. The CVs include compute resources (cores, cpu-speed, memory capacity, etc.), IO path (memory bandwidth,

disk IO bandwidth, etc), buffer space allocation (cache space, meta-data space), etc. We ran about 1000 experiments and

collected data on different configurations (denoted 𝑐𝑛, 𝑛 = 1, 2, .., 𝑁). Each configuration 𝑐𝑛 involves the setting of𝑀

different configuration variables (CVs). This data-set was further averaged and smoothed the outliners. Table. 2 illustrates

the (randomly selected) configurations 𝑐𝑛 ’s and the corresponding outputs 𝑂𝑛 ’s (known), and the 𝐻 ’s (unknown) for

such a configuration has to be estimated.

Our CSG configurations include CPU cores, DRAM bandwidth, memory capacity, and storage bandwidth during the

execution of workloads (inline with Ref. [23, 24, 45]), although the number of variations that we experimented with

had to be limited for practical reasons. Nevertheless, the availability of both hardware and software parameters in our

data helps us do a good evaluation and to better explain the results below.

The workload is an important component that defines the behavior of the system and the observable outcome

(e.g. performance) [32]. In CSG data-set D, the number of files, file size, and request metadata size refers to the user

workload (provided by the vendor). Applying the principles stated in section 3.2, we eliminated the least important

CVs (i.e. 𝐿𝑢𝑛 above). For example, using domain knowledge coupled with PCA and reasons explained in the CSG

Manuscript submitted to ACM

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Sanjeev Sondur and Krishna Kant

paper [38], we marked Log Space Resource and Network Bandwidth as unwanted CVs (𝐿𝑢𝑛). The normalized data-set

of the empirical data is shown in Table. 3. Based on the widespread of a few data-points (e.g. file size, and no. of files),

we used Log normalization to re-engineer the configuration object values (𝑝𝑛𝑚) to a new object (𝑝 ′𝑛𝑚). The full data-set

was normalized between a small value (𝜀 = 10
−3
) and 1.0. After such pre-processing, we use the data-set in the CHI

to discover individual 𝛾 ’s & 𝜂’s of various 𝑃𝑚 ’s. With this empirical data in hand, we applied the CHI to answer the

research questions ((R1) to (R3)) raised above.

4.2.2 "BitBrains" Data-set. Next, we examine the application of CHI to the public domain data from TU Delft BitBrains

data-trace [36]. This data-set contains the performance metrics of 1,750 Virtual Machines (VMs) from a distributed

data-center from BitBrains, which provides specialized services for managed hosting and business computation for

enterprises. This data-set includes somemixture of customer workload frommajor banks (e.g., ING), credit card operators

(e.g., ICS), insurers (e.g., Aegon), etc. During pre-processing, we noticed that the ’fastStorage-1250’ data-set contained

huge records of zero values (e.g. zero disk IO or network activity) compared to the’Rnd-500’ data-set. Therefore, we

used the latter, which has 500 VMs that are either connected to the fast SAN (storage area network) systems or to much

slower Network Attached Storage (NAS) systems. The data characteristic and usage is described in Table. 7 and the

description of the CVs are taken from Ref [36].

4.2.3 "Enterprise" Data-set Characteristics. The last four data sets (SS2, SS3, SS8, SS10) in Table. 5 & 7 have been used

in [28, 29, 37] for the performance model, which we compare against our approach. For simplicity, we label these

as "Enterprise Data-set". These data sets include traces from a web-server, key-value DBMS, relational DBMS, and a

sorting tool. Berkeley DB (C) (marked SS2) is an embedded key-value-based database library that provides scalable high

performance database management services to applications. SQLite (SS3) is the most popular lightweight relational

database management system used by several browsers and operating systems as an embedded database. Apache HTTP

Server (SS8) is a highly popular Web Server. Incidentally, the Apache server has about 550+ [49] CVs
8
but these were

cut-down to only nine CVs in [28, 37], but the rationale or the method for doing so is unclear. Roll Sort (SS10) is an

environment configuration where “rs” program is run by varying 6 features and the throughput is measured. The

characteristics of the Enterprise data-set
9
is given in Table. 7 and the description

10
of the CVs are taken from Ref. [28].

We refer readers to the detailed literature at Ref. [28, 29, 37] for full systems description of the enterprise data sets.

5 DETAILED RESULTS

5.1 Discovering the Influence of configuration objects

Table. 3 shows a small subset of the CSG data-set D𝑡𝑒𝑠𝑡 with all configuration parameters normalized to a range 0 · · · 1.
Each row represents an input configuration file (𝑐𝑛 ’s) and the columns correspond to the configuration objects (𝑃𝑚 ’s).

CV names (𝑃 ’s) are given in the header row and the last column refers to the observed output metric (𝑂𝑛 ’s, in this case,

performance expressed as bits/sec).

The results in Table. 8 show the final ‘discovered’ health index ℎ𝑛𝑚 ’s in each cell {𝑛,𝑚} for various configuration
object values 𝑝𝑛𝑚 (seen in Table. 3) based on the above regression solution. CHI computes the 𝛾 ’s & 𝜂’s for each

configuration object 𝑃𝑚 ’s to satisfy the objectives explained earlier and computes the overall health index of the

configuration file (H ’s). The last two columns of Table. 8 show that the computed H ’s is closely related to the normalized

8
Apache doc. at: https://httpd.apache.org/docs/2.4/configuring.html & https://httpd.apache.org/docs/2.4/mod/core.html

9
Data-set at: https://github.com/ai-se/Reimplement/tree/cleaned_version

10
CV details: http://tiny.cc/3wpwly

Manuscript submitted to ACM

https://httpd.apache.org/docs/2.4/configuring.html
https://httpd.apache.org/docs/2.4/mod/core.html
https://github.com/ai-se/Reimplement/tree/cleaned_version
http://tiny.cc/3wpwly

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

Performance Health Index for Complex Cyber Infrastructures 19

Table 7. Characteristics of Data-sets [16, 29, 30, 36, 38]
Code System Description of CVs Observed

Behavior

CSG Cloud Storage

Gateway

CSG config.{No.of cores, Core speed, Memory Size, Memory bandwidth,

NW bandwidth, Storage IO, Data cache, Meta-data cache, Log space}

Workload char. {No.of files, File Size, Meta-data Size}

Completion

Time /

Performance

BB TU Delft

BitBrains

VM Cont.Id, Timestamp, No.of cores, CPU capacity (MHz), CPU Usage
(MHz), Network Read Bandwidth (KB/s), Network Write Bandwidth

(KB/s), Memory Size (MB), Memory Usage (MB), Memory Usage(%), Disk
Read Throughput (KB/s), Disk Write Throughput (KB/s),

CPU

Usage(%)

SS2 SQL Lite server OperatingSystemCharacteristics, SQLITESECUREDELETE, ChooseSQLITETEMP-
STORE, SQLITETEMPSTOREzero, SQLITETEMPSTOREone, SQLITETEMPSTOREtwo,
SQLITETEMPSTOREthree, EnableFeatures, SQLITEENABLEATOMICWRITE, SQLI-
TEENABLESTAT2, DisableFeatures, SQLITEDISABLELFS, SQLITEDISABLEDIRSYNC,
OmitFeatures, SQLITEOMITAUTOMATICINDEX, SQLITEOMITBETWEENOPTI-
MIZATIO0, SQLITEOMITBTREECOUNT, SQLITEOMITLIKEOPTIMIZATIO0, SQLI-
TEOMITLOOKASIDE, SQLITEOMITOROPTIMIZATIO0, SQLITEOMITQUICKBAL-
ANCE, SQLITEOMITSHAREDCACHE, SQLITEOMITXFEROPT, Options,
*SetAutoVacuum, AutoVacuumOff, AutoVacuumO0, SetCacheSize, StandardCache-

Size, LowerCacheSize, HigherCacheSize, LockingMode, ExclusiveLock, Normal-

LockingMode, PageSize, StandardPageSize, LowerPageSize, HigherPageSize, High-

estPageSize

Performance

SS3 Berkeley DB C havecrypto, havehash, havereplicatio0, haveverif1, havesequence, haves-

tatistics, diagnostic, pagesize, ps1k, ps4k, ps8k,ps16k, ps32k, cachesize,

cs32mb, cs16mb,cs64mb, cs512mb

Performance

SS8 Apache Server Base, HostnameLookups, KeepAlive,EnableSendfile, FollowSymLinks,

AccessLog,ExtendedStatus, InMemor1, Handle

Performance

SS10 Roll Sort spouts, maxspout, sorters, emitfreq, chunksize, messagesize Throughput

observed metric (last column 𝑂’s). During this discovery phase, the minimum MSE achieved was around 0.0128 after

500 iterations.

Table 8. Results: CSG Configuration Files with computed ℎ𝑖 ’s & 𝐻𝐼 metrics

Config

File

Cores Core

Speed

Mem.

Size

Mem.

BW.

Storage

IO

No.of

Files

File

Size

Metadata

Size

Cache

Space

MetaData

Space

HI

geoMean

𝑂𝑖

𝑐4 0.22 0.71 0.75 0.56 0.91 0.97 0.78 0.94 0.35 0.31 0.58 0.50

𝑐16 0.22 0.71 0.75 0.56 0.91 0.97 0.88 0.94 0.88 0.67 0.70 0.68

𝑐31 0.22 0.71 0.75 0.56 0.91 0.91 0.96 0.96 0.88 0.67 0.70 0.77

𝑐33 0.22 0.71 0.75 0.56 0.91 0.91 0.96 0.94 0.56 0.52 0.65 0.78

𝑐36 0.22 0.71 0.75 0.56 0.91 0.91 0.96 0.94 0.88 0.67 0.70 0.77

𝑐62 0.53 0.85 0.75 0.84 0.53 0.97 0.88 0.94 0.56 0.31 0.68 0.70

𝑐66 0.53 0.85 0.75 0.84 0.53 0.97 0.88 0.94 0.92 0.67 0.77 0.70

𝑐76 0.53 0.85 0.75 0.84 0.53 0.97 0.91 0.94 0.56 0.31 0.68 0.76

𝑐86 0.53 0.85 0.75 0.84 0.53 0.91 0.96 0.96 0.88 0.67 0.77 0.84

𝑐96 0.53 0.85 0.75 0.84 0.53 0.98 0.99 0.96 0.70 0.52 0.74 0.85

After regressing through the data-set to achieve the desiredminimumMSE,CHI correlates the individual configuration

object values 𝑝𝑛𝑚 ’s and their respective ℎ𝑛𝑚 ’s and determines the “influential behavior” of each of the CVs (𝑃𝑚 ’s). With

the discovered 𝛾 ’s & 𝜂’s, CHI can build a picture of how each of these CVs affects the outcome 𝑂𝑛 . This relationship is

shown in Fig. 6. In this figure, the x-axis shows the normalized values of each CV (shown as the label above sub-graph)

and the y-axis is the normalized value of the respective health index (ℎ𝑖 for 𝑃𝑖), and the name of the CV given above the

sub-graphs.

Manuscript submitted to ACM

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Sanjeev Sondur and Krishna Kant

These figures demonstrate that CHI can discover the behavior with respect to each CV including the strength of the

influence, the cut-off point of diminishing return 𝑃
(𝑚𝑜𝑑𝑒)
𝑚 , and rate of decay afterward. The graphical results in Fig. 6

can be visualized by the user to understand how different CVs influence the configuration H (and in turn the service

behavior).

We examine these graphical results closely and show that the results are indeed supported by our in-depth study

of CSG domain [39]. For example, it is seen that the CSG performance is unimodal with respect to the Cache Space

and Meta-Data Space, wherein, there is a threshold beyond which any further increase is detrimental to the system

performance. This is supported by our earlier CSG research work [39] wherein we showed that allocating excessive

cache space (i.e., blindly throwing resources at the problem) does not help. The CSG needs to perform background

tasks such as garbage collection, data eviction to Cloud, data-refresh, etc. Allocating excessive data cache buffer (see

sub-graph in Fig. 6) can hurt these background processes, taking additional time to examine the data in the cache and

reduce performance. Similar findings on meta-data space configuration is supported by our CSG work in that excessive

meta-data space allocation will trigger large metadata operations which in turn takes time, CPU, and memory resources

and reduces performance (also observed by Ref. [46]).

Fig. 6. Results: HI metrics for CSG

5.2 Behavior with "New" Configurations

We use the discovered values, i.e. outcome of the optimization objective (𝛾𝑚 ’s & 𝜂𝑚 ’s) to determine the 𝐻𝑛𝑒𝑤
of a

set of a new (unseen) configuration file. We use the 2
𝑛𝑑

part of the split empirical data set D𝑡𝑒𝑠𝑡 to validate the CHI.

The 𝐻𝑛𝑒𝑤
is computed using the validation model in the CHI framework (marked shaded in Fig. 2). Note that the

computation of new 𝐻𝑛𝑒𝑤
does not dependent on the compute unit or input from experts or regression logic, because

the characteristics of various 𝑃𝑚 ’s is already discovered and stored in the CHI repository. Table. 8 shows the computed

ℎ𝑛𝑚 and 𝐻𝑛𝑒𝑤
of the new (D𝑡𝑒𝑠𝑡 configuration files. The last two columns in Table. 8 show that the newly computed

𝐻𝑛𝑒𝑤
is closely related to the observed metric 𝑂𝑛𝑒𝑤

s (i.e. the true value). This set of results demonstrates that CHI
Manuscript submitted to ACM

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

Performance Health Index for Complex Cyber Infrastructures 21

can reasonably determine the probable behavior of the service (i.e observable metric 𝑂’s) of the new configuration

files using the 𝛾 ’s & 𝜂’s discovered earlier. The MSE and variance (collectively called error rate) for different train/test

ratio data-set for various systems is given in Table 5. This also shows that CHI can help in evaluating the behavior on a

new/unseen configurations (CVs, hardware, workload, etc.).

5.3 CHI for "BitBrains" Data

In the absence of an explicit throughput measure, we quantify CPU utilization as an observable metric (𝑂’s) and the

remaining attributes as CVs (𝑃 ’s). The latter can be changed and allocated differently for the various VMs. In the absence

of any further information, we identify each VM as a unique configuration with its associated compute, memory, disk IO,

and network resources. We ignore other CVs marked using italicized font in row “BB” in Table 7, since these additional

CVs represent insignificant aspects of the system. A sample of raw data-set taken directly from Ref. [16] and used in

our studies is given in Table. 9. Using this data, we restate the above research question as: Quantify the influence of

various CVs of the VM on the CPU utilization in Bitbrain data-center.

Since the detailed time-series for each VM setting is not of interest here, we first compute the average value of every

parameter for each VM. Given the long length of the trace, the averages should be quite reliable. The results indicate

that a few VMs are outliers, with either almost no resource usage in spite of significant resource allocation, or very

large resource usage of one type (e.g., VMs that only do very intensive IO). We filtered out all zero value records as this

would make the average resource usage so tiny that the entire exercise will be useless. After filtering, we normalized

the data-set and used it for input to the CHI model. The results are shown in Figs. 7, with each sub-graph showing the

influence of a CV on the observable metric. In all the graphs, the x-axis denotes the normalized values of each CV 𝑃𝑖

(shown by a label above the graph) and the y-axis is the normalized value of the chosen output metric (𝑂𝑖), namely the

CPU utilization.

Note that in BitBrains data-center architecture, all VMs simply share the available SAN capacity (in terms of disk

space and IO throughput), and network capacity. Also, since multiple VMs share the same underlying physical resources,

a VM configuration can saturate quickly without yielding additional performance benefits, as the bottleneck can lie

elsewhere.

Table 9. Sample FastStorage (RND 500) Configuration File [16]

Identifier Configurable Variables (CVs) Neglect Workload Observed

Metric

Container

ID

CPU

cores

CPU

Capacity

[MHZ]

Memory

Capacity

[KB]

NW

Rcvd

[KB/s]

NW

Trsmt

[KB/s]

CPU

usage

[MHZ]

Memory

usage

[KB]

Disk

read

[KB/s]

Disk

write

[KB/s]

CPU

usage

[%]

21.csv 8 23408.00 5111808.00 3.16 0.82 392.64 37282.67 93.28 106.89 1.68

108.csv 4 11704.00 16703488.00 175.85 6.97 788.56 494927.40 530.30 1331.83 6.74

136.csv 4 10400.00 1725502.76 29.53 1.68 341.47 1466226.55 220.93 153.90 3.28

392.csv 4 10640.11 16774687.20 243.38 621.50 3507.89 5775129.23 153.33 2914.24 32.97

495.csv 8 20800.00 4173930.42 153.06 68.89 363.93 528867.27 53.81 74.82 1.75

With limited insight into this data-set, we can theorize that performance as a function of the four CVs shown (namely

number of CPU cores, memory size, CPU speed, and the disk IO rate) shows a familiar diminishing returns behavior

with saturation. This is exactly what we would expect from a basic domain knowledge of computer architecture and

IO modeling. For example, the overall CPI (cycles per instruction) for a workload depends on many factors, and thus

decreasing only one parameter (e.g., core CPI or access latency) will provide the kind of behavior we see in these graphs.

Manuscript submitted to ACM

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

22 Sanjeev Sondur and Krishna Kant

Fig. 7. Results: HI metrics for FastStorage (RND 500)

5.4 CHI for Enterprise data sets

The key results from the CHI model were summarized earlier in Table 5 (see rows for SS2,SS3,SS8,SS10). With the

exception of Roll-Sort, which we discuss shortly, the MSE and its variance are quite low consistently, from about 1.7%

to 6.2%. Furthermore, the learning time for CHI ranged between 10 to 25 seconds for all these data sets. These results

substantially surpass the prediction results in the literature using these data sets both in terms of accuracy and time. For

example, Ref.[13] uses incremental random samples with steps equal to the number of configuration options (features)

of the system. They show rather unstable predictions with a mean prediction error of up to 22%, and a standard deviation

of up 46%. Ref. [37] discusses a technique that learn predictors for configurable systems with low mean errors, but the

variance in the predictions could be very large; in particular, in half of the results for the Apache Web server predictions,

standard deviation was up to 50%. Also, the learning time is reported to be 1-5 hrs depending on the data-set.

Fig. 8. Results: HI metrics for SQL Lite Configuration

Before discussing the results in Fig. 8 for SQL Lite, we note an important point about its configuration settings. Like

most real-world databases, SQL Lite has a large number of configuration parameters, but many of them do not have

much influence on the performance. The model used in Ref. [28] had several unexplained options compared to SQL Lite

documentation
11
. While we cannot speak directly about this data-set, it appears (based on our deep understanding of

how relational databases operate), that these additional parameters (which represent some minor options to be turned

11
SQL Lite doc. at https://www.sqlite.org/c3ref/c_config_covering_index_scan.html & https://www.sqlite.org/c3ref/c_dbconfig_defensive.html.

Manuscript submitted to ACM

 https://www.sqlite.org/c3ref/c_config_covering_index_scan.html
https://www.sqlite.org/c3ref/c_dbconfig_defensive.html

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

Performance Health Index for Complex Cyber Infrastructures 23

Fig. 9. Results: HI metrics for Roll-Sort Configuration

on/off) should not have a strong influence on SQL-Lite performance. We thus decided to exclude them in our CHI

modeling is shown in Fig. 8. The excluded CVs are marked as an italicized font in Table. 7 and CVs considered by CHI is

marked as a normal font (after marker *).

Finally, we show the CHI models for the Roll-Sort (SS10) workload in Fig. 9. Unlike other workloads, which represent

complex applications, Roll-sort is merely a sorting algorithm and has only six CVs, but it is unclear what’s special about

and whether this is an external sort. The CHI model shows that the influence of several CVs saturates at certain values

and any further increase in the resource (e.g. No.of sorters, chunk size) does not result in better performance. However,

it appears that the data here is very noisy, perhaps influenced by the IO subsystem.

Ref. [28] mentions that for several software systems in their study, the configuration spaces are far more complicated

and hard to model. They color code these hard-to-model systems as yellow and red (Fig. 1 in Ref. [28]). Further, they

state that applying the state-of-the-art technique by Guo at al. [13] on these software systems showed the error rates of

the generated predictor up to 80%. Using the data-set for the same systems used by Ref. [13] (See Table II & III), CHI

showed a substantial improvement in error rate MSE and variance as shown in Table 10. With 50% D𝑡𝑟𝑎𝑖𝑛 & 50% D𝑡𝑒𝑠𝑡

for these data sets, CHI achieved an MSE for SQL Lite at 6.2%, for Berkeley DB C: 4.17%, and for Apache Server: 3.71%.

CHI can outperform in most cases since the objective is to discover the influence of individual CVs rather than focus

on building a detailed performance model (Table. 10). Additionally, CHI does not depend on the sampling techniques

which are again data dependent.

6 DISCUSSION: SEGMENTED REGRESSION (MARS & LARS)

The influence of individual CVs on the health index can be complicated [55] and is generally not linear. Yet much

of the data-driven behavior, characterization attempts to fit linear or piece-wise linear segments to the observations.

In particular, if we have 𝑀 predictor variables (𝑋 = {𝑥𝑖 }, i ∈ 1 · · ·𝑀) (CVs in our study) and observed output (𝑌)

(performance in our study), a typical assumption is a linear relationship along with a normally distributed error term 𝜀

with zero mean and variance 𝜎2:

𝑌 = 𝑋𝛽 + 𝜀, where 𝜀 = N(0, 𝜎2) (13)

Linear Regressions – Ordinary Least Square (OLS), Ridge, Lasso: Such regression algorithms aim to estimate

ˆ𝛽 (the unknowns) such that some measure of overall error is minimized. For example, OLS regression minimizes the

sum of squares of residuals to achieve the unbiased estimate:

𝐿𝑂𝐿𝑆 (ˆ𝛽) =
𝑁∑
𝑖=1

(𝑦𝑖 − 𝑥𝑖𝛽)2, and minimize

(
|𝑌 − 𝑋𝛽 |2

𝑛

)
(14)

Other algorithms such as Ridge or Lasso regression try to reduce variance at the cost of introducing some bias. For

example, Lasso regression adds the constraint

∑𝑀
𝑗=1 (|𝛽 𝑗 | < 𝑡) where 𝑡 is a given threshold. Lasso has a parsimony

Manuscript submitted to ACM

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

24 Sanjeev Sondur and Krishna Kant

property [7, 43]: for any given constraint value 𝑡 , only a subset of the predictor variables (i.e. 𝑥𝑖 ’s) have nonzero values.

i.e. many predictor variables can have a zero thereby suppressing their contribution to the output 𝑌 . That is, in the

configuration problem at hand, these algorithms try to “suppress” the contribution of some CVs.

Table 10. Error Rates (MSE and Variance) of Enterprise Data-set

Code CHI Error Rate Error Rate [13] Error Rate [37]

[SS2] 6.20% ± 3.11% 7.2% ± 4.2% N/A

[SS3] 4.17% ± 2.19% 6.4% ± 5.7% 19% ± 1%

[SS8] 3.71% ± 2.1% 9.7% ± 10.8% 27% ± 46%

Further, Ref. [46] argues that machine

learning based analytical models, though

have been shown to work very well in some

specific scenarios, do not consider the domain

specific practical factors such as non-linear

multi-threading overhead or JVM GC activi-

ties, which are very related to soft resource allocation and can significantly degrade server efficiency. Our evaluation

supports this statement with empirical results, as given in section 6.1.

Multivariate Adaptive Regression Spline (MARS): MARS [11, 26] is a technique for deriving simple multi-

segment models from the data. It can be viewed as an extension of a linear model that automatically models non-

linearities and interactions between variables by combining hinge functions of the form ±𝑚𝑎𝑥 (0, 𝑥 − 𝐾), (where 𝐾 is a

constant). MARS builds a linear model of the form:

𝑦 = ˆ𝑓 (𝑥) =
𝑘∑
𝑖=1

𝑐𝑖𝐵𝑖 (𝑥) (15)

where the predicted value (𝑦) is a sum of coefficient (𝑐𝑖) and basis function (𝐵𝑖 (𝑥)). Our investigation revealed that a

greedy model like MARS uses brute force to derive the above parts of the model (𝑐𝑖 ’s & 𝐵𝑖 ’s), and the hinge function cut-

off points (𝐾). Though the MARS model can yield good results for predicting new outcomes, an uninformed model like

MARS for CHI has little regard for the physics of the problem and may behave in unexpected ways such as eliminating

certain important CVs or puttin in hinge points (i.e., change in slope) at unexpected places or increase/decrease slope in

unexpected ways. For example, instead of showing a steady diminishing-returns property that applies in almost any

situation with increasing resources, MARS may as well use a line segment with a larger slope on the higher end!

Least Angle Regression (LARS): LARS [7, 34, 41] produces a full piece-wise linear solution path to a non-linear

relationship between predictor variables 𝑥𝑖 ’s and output 𝑦. LARS algorithm is similar to forward step-wise regression,

but instead of including variables at each step, the estimated parameters are increased in a direction equiangular to each

one’s correlations with the residual. In section 6.1, we show the limitations of LARS in discovering the influence of the

CVs on the performance, wherein the algorithm ignores important CVs though there is a wider variance of such data.

In designing a solution, the “goodness” is often defined in terms of prediction accuracy, but parsimony is another

important criterion since simpler models provide better insight into the 𝑋 ⇒ 𝑌 relationship [7]. However, we believe

that this tradeoff (i.e., more segments implying better accuracy) is introduced somewhat artificially by restricting the

model to linear segments which ignore the physics of the problem. Instead, our approach is to find a nonlinear function

that shows the desired characteristics (e.g. smoothness, diminishing returns, complexity related loss in performance,

etc.) without splitting into more & more segments. We show that such an approach not only correctly captures the

expected behavior of the system, it is also less complex.

6.1 Results: Segmented Regression (MARS & LARS)

Although the segmented regression algorithms (MARS and LARS) can do a good job of fitting the data and thereby

yield superior prediction accuracy within the range covered by the data, a blind faith in data is particularly troublesome

Manuscript submitted to ACM

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Performance Health Index for Complex Cyber Infrastructures 25

Table 11. Results from Segmented Regression (MARS & LARS) for 80% 𝐷𝑡𝑟𝑎𝑖𝑛 & 20% 𝐷𝑡𝑒𝑠𝑡

Code CVs considered by MARS CVs ignored by MARS MARS MSE LARS MSE

CSG FileSize, No.of.Files, Cores Core Speed, Memory, MemBW, Disk

IO, Cache Space, Meta-Data Space,

Req.MetaData Size

0.0015 0.0054

BB NW transmitted, NW received,

Memory, Disk Read

CPU cores, CPU capacity, Disk

Write,

0.0253 0.0327

SQL

Lite

SetAutoVacuum, AutoVacuumO, Au-

toVacuumO0, SetCacheSize, Page-

Size, HigherCacheSize, Exclusive-

Lock, StandardPageSize

StandardCacheSize, LowerCache-

Size, LockingMode, Normal-

LockingMode, LowerPageSize,

HigherPageSize, HighestPageSize

0.0262 0.0260

Berkeley

DB C

have crypto, diagnostic, ps1k, ps4k,

ps8k, ps16k, ps32k, cs16mb, cs512mb

have hash, have replicatio0, have

verif1, have sequence, have statistics,

pagesize, cachesize, cs64mb

0.0166 0.0170

Apache EnableSendle, KeepAlive, Handle, In-

Memor1

Base, HostnameLookups, AccessLog,

ExtendedStatus, FollowSymLinks

0.0138 0.0147

for physical systems where we do understand many things about reasonable vs. anomalous behavior. For example,

the artificial data fitting by these algorithms often runs counter to sensible behavior, such as showing a higher slope

with more resources (i.e., superlinear behavior) where generally one would expect diminishing returns and hence a

flattening trend. Even worse, these algorithms may kick out the important CVs and keep the irrelevant ones since they

do not have any insight into the nature of individual predictors.

For example, MARS uses a brute force algorithm to regress over a CV 𝑃𝑖 to reach the best possible MSE before

considering the next CV 𝑃 𝑗 . This is evident from the results as shown in Table. 11, wherein MARS ignores several

CVs for all the domains. In our work involving CSG, we (as experts who have significant experience with it) can

confidently say that the ignored CVs (CacheSpace, Meta-DataSpace, Req.MetaData Size, Memory, etc.) have a dominant

bearing on the performance of the system. As has been noted in our earlier work [38, 39], although File size and No. of

Files are prominent workload characteristics that do have a bearing on the performance, but they are not the primary

components that can be isolated from the rest. Similar observations for BitBrains VM components show that MARS

ignores most of the CVs and the performance prediction is solely based on two components (Network & Disk). VM

performance experts tend to argue that compute capacity (CPU cores, CPU core speed) influences performance heavily.

We show the results from LARS in Fig. 10 for different domains, where the x-axis shows the normalized values of

the CV settings (𝑝𝑖 ’s) and the y-axis shows the normalized values of the performance of the system. Fig. 10(a) is the

LARS output for CSG illustrates that performance is heavily dependent on only three components (cores, core speed,

memory bandwidth). As systems people, we know that the performance is not dominated by one or two components,

but is dependent on a balance between compute, memory, disk IO & workload. Similar results are evident in Fig. 10(b),

where the VM performance is linearly dependent on two prime components (CPU cores & CPU capacity[MHz]), largely

ignoring the rest of the CVs. This is again in contrast with VM domain knowledge – as basic architecture knowledge

would indicate, the compute resource does not have a linear relationship with performance. Instead, the performance

depends on the overall CPI (cycles per instruction) which is impacted by cache and memory path latencies. Finally,

although MARS & LARS use a similar approach for segmented regression (i,e. converting a non-linear relationship into

a series of linear regions), we see that they yield drastically different results, which too is troubling and indicates a

dissociation from the physics of the problem.

Manuscript submitted to ACM

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

26 Sanjeev Sondur and Krishna Kant

(a) CSG (b) BB

(c) Apache (d) BDBC

(e) SQL Lite (f) Roll Sort

Fig. 10. Results: LARS Coefficients (weights) for the above data sets

This study validates our argument that a blind belief in data-driven models or direct application of a well-versed

algorithm is not only counterproductive but risks interpreting the results with no attention to the dynamics of the

system under study.

Manuscript submitted to ACM

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

Performance Health Index for Complex Cyber Infrastructures 27

To encourage future extensions to CHI and future study in configuration subject areas, we share the full data-set

used in Table 5, the python implementation of CHI, MARS & LARS, and the full set of results at https://www.kkant.net/

config_traces/CHIproject.

7 CURRENT STATE OF THE ART AND CHALLENGES

7.1 CHI vs. State of Art.

Many domain specific articles speak about challenges pertaining to the configuration (or resource allocation) of

networks [8, 9, 18], compute units or storage [3], operating systems [52], applications [37, 46], Cloud [25, 27], etc.

A prominent approach in the literature on configuration settings has been the performance influence model (PIM)

that captures the relationship between CVs and the performance [5, 28, 37]. PIM is almost entirely dependent on

model training using available performance data and does not reflect or exploit any domain knowledge concerning

either the relationships or the limitations that go beyond the range of training data. PIM like approaches look at

the statistical influence of the configuration values and do not consider the design and architecture but are learned

from observations [54]. A pure statistical model simply fits the data to a model but does not provide any insights into

whether or why the real behavior is compatible with the statistical observations. In contrast, CHI aims at identifying

the dominant properties of the CVs and quantifying their parameters using the data.

Xu et al. [49] report that the Apache server has more than 550 parameters and many of these parameters have

dependencies and correlations, which further worsens the situation. Reference [28, 37] narrows this down to only

nine CVs configuration options
12
, but no rationale is given. In particular, the thread-pool size of Apache Server is

not considered but is reported to be critical in Wang et al. [46].We believe that such issues can substantially benefit by

exploiting the domain knowledge of the administrators instead of simply depending on the data, which could be misleading

or inadequate.

Probability based approaches for finding optimum configurations such as ConEx [21] are a variation of the PIM

model that probabilistically sample the configuration space and then generate a machine learning (ML) model to predict

an outcome (usually performance). However, the contribution of individual configuration parameters on the outcome is

not modeled. Variability aware models proposed by Guo et al. [13] work on boolean CVs (being set true/false), but it

is well known that arbitrary Boolean functions of this form simply cannot be learned [54]. As discussed by Zhang et

al. [54], we show that performance functions are not arbitrary, but rather structured, hence can be potentially learned

effectively.

In Ref. [2], authors build performancemodels for various applications to accurately distinguish the best or close-to-the-

best configuration from the rest with only a few test runs. Using FLASH [30], authors sort or rate the configurations in

order of the performance achieved. Ernest [45] design an ability to predict the performance of applications under various

resource configurations to automatically choose the optimal configuration. In Ref. [24], authors study performance

variability and answer how many repetitions of an experiment are likely to be needed to achieve high confidence in the

results within a sufficiently narrow confidence interval. It is true that the performance could vary substantially due to

variations in the workload; however, this is not a configuration issue. For our purposes, we are interested in average

performance supported by a configuration, and not instantaneous performance or performance for specific workload

inputs. The variability will make performance non-monotonic and multi-modal, which is precisely the characteristics

that CHI uses.

12
See http://tiny.cc/3wpwly

Manuscript submitted to ACM

https://www.kkant.net/config_traces/CHIproject
https://www.kkant.net/config_traces/CHIproject
http://tiny.cc/3wpwly

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

28 Sanjeev Sondur and Krishna Kant

Velez et al.[44] & Ha et al. [14] observed that the influence of configuration parameters on performance is highly

variable, i.e., some options are highly influential while others have little or no impact on the performance. Such

performance variations have made it very challenging to predict the performance of an application running in the Cloud

environment. CHI postulates the influence of the CVs as a convex-concave function (e.g., monotonic with diminishing

returns) and thus quantifies the behavior of the configuration more descriptively.

Xu et al.[50] in their study of various application configurations reveal that about 4.7%–38.6% of the critically

important CVs do not have any early checks and thereby cause a severe impact on the system’s behavior. Xu focuses

the study on CVs related to the system’s Reliability, Availability, and Serviceability (RAS). This concept is in line with

our approach in that CHI eliminates unimportant CVs (explained later as 𝐿𝑢𝑛) and expresses the service behavior with

a measurable health index metric. Wang et al. [46] show that liberal allocation of a CV (i.e DB pool size) can lead

to performance degradation. Further, their study shows the importance of considering the practical factors such as

non-linear effect of resource allocation. CHI supports this observation and models the non-linearities in CVs as given

above.

In Cloud environments, Zaman et al. [53] show that VM provisioning depends heavily on resource allocation which

in turn affects economics and bidding process (e.g. 𝑉𝑀1 with 1x2-GHz CPU, 8GB memory, 1TB disk vs. 𝑉𝑀2 with

2x2-GHz CPU, 16GB memory, 2TB disk;). Zhu et al. [55] demonstrate the difficulty and infeasibility of the configuration

tuning problem using common machine learning model-based methods. Wei et al. [47] and Moradi et al. [27] highlight

the complexity of allocating multiple resource types in a study of heterogeneous resource allocation in Cloud VMs.

Using practical data from a Cloud Storage environment [38], we show that CHI can help understand the effect of

resource allocation. By understanding how multiple resource types (e.g., number of CPU cores, disk size, etc.) affect the

performance/workload, CHI can aid users in reducing the monetary costs by choosing the right heterogeneous and

economical resource allocation, thus be also cost-efficient.

It is also worth noting that although there are many Configuration Management Tools (e.g., CFEngine, Puppet,

Ansible, etc. [31]), their job is only the application of provided settings to multiple resources consistently and ensuring

that certain given relationships hold.

8 CONCLUSIONS

The behavior of all cyber systems depends on a set of configuration variables (CVs) which if set improperly could

result in a variety of problems including sub-optimal performance. In this paper, we present a performance related

Configuration Health Index (CHI) framework that can quantify the contribution of individual CVs towards the overall

performance of the service. We evaluate CHI using a model-driven approach that exploits both the domain knowledge

and the available data. We demonstrate the applicability of CHI using data sets from state-of-art systems and our study

of Cloud Storage Gateway. In all cases, we demonstrate that CHI can learn the influence of CVs on service performance

and accurately predict the behavior for new (yet unseen) configuration settings. We show that our approach works

better than a pure data-driven characterization and can give a better a priori insight into the influence of the CVs on

the system performance. We believe that CHI provides a substantial improvement over the state of the art and can be

broadly applicable to a wide range of configuration management problems. We also demonstrate the dangers of the

pure data driven models in that they might predict a wrong trend or eliminate important configuration variables. An

approach that uses data judiciously along with the domain knowledge based constraints can address this problem.

Manuscript submitted to ACM

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Performance Health Index for Complex Cyber Infrastructures 29

ACKNOWLEDGEMENTS

We appreciate the support and active participation of Girisha Shankar (Ph.D student) from Indian Institute of Science,

Bengaluru, India and Dr. Slobodan Vucetic of Temple University. The discussions with them were highly valuable in

devising the solution and added to the techniques presented in the paper.

REFERENCES
[1] Alexander Pucher. Cloud Traces and Production Workloads for Your Research, 2020.

[2] Alipourfard, O., Liu, H. H., Chen, J., Venkataraman, S., Yu, M., and Zhang, M. Cherrypick: Adaptively unearthing the best cloud configurations

for big data analytics. In 14th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 17) (2017), pp. 469–482.
[3] Anderson, E., Hobbs, M., Keeton, K., Spence, S., Uysal, M., and Veitch, A. C. Hippodrome: Running circles around storage administration. In

FAST (2002), vol. 2, pp. 175–188.

[4] Bauer, L., Garriss, S., and Reiter, M. K. Detecting and resolving policy misconfigurations in access-control systems. ACM Trans. Inf. Syst. Secur.
14, 1 (June 2011), 2:1–2:28.

[5] Calotoiu, A., Beckinsale, D., Earl, C. W., Hoefler, T., Karlin, I., Schulz, M., and Wolf, F. Fast multi-parameter performance modeling. In 2016
IEEE International Conference on Cluster Computing (CLUSTER) (2016), pp. 172–181.

[6] Daubechies, I., DeVore, R., Foucart, S., Hanin, B., and Petrova, G. Nonlinear approximation and (deep) relu networks. arXiv preprint
arXiv:1905.02199 (2019).

[7] Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., et al. Least angle regression. Annals of statistics 32, 2 (2004), 407–499.
[8] Fernandes, G., Rodrigues, J. J., Carvalho, L. F., Al-Muhtadi, J. F., and Proença, M. L. A comprehensive survey on network anomaly detection.

Telecommunication Systems 70, 3 (2019), 447–489.
[9] Fogel, A., Fung, S., Pedrosa, L., Walraed-Sullivan, M., Govindan, R., Mahajan, R., and Millstein, T. A general approach to network

configuration analysis. In 12th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 15) (2015), pp. 469–483.
[10] Forum of Incident Response and Security Teams. Common Vulnerability Scoring System. https://www.first.org/cvss/, 2017.

[11] Friedman, J. H. Multivariate adaptive regression splines. The annals of statistics (1991), 1–67.
[12] Guo, J., Chang, Z., Wang, S., Ding, H., Feng, Y., Mao, L., and Bao, Y. Who limits the resource efficiency of my datacenter: An analysis of alibaba

datacenter traces. In 2019 IEEE/ACM 27th International Symposium on Quality of Service (IWQoS) (2019), IEEE, pp. 1–10.
[13] Guo, J., Czarnecki, K., Apel, S., Siegmund, N., and Wasowski, A. Variability-aware performance prediction: A statistical learning approach. In

2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE) (2013), IEEE, pp. 301–311.
[14] Ha, H., and Zhang, H. Deepperf: performance prediction for configurable software with deep sparse neural network. In 2019 IEEE/ACM 41st

International Conference on Software Engineering (ICSE) (2019), IEEE, pp. 1095–1106.
[15] He, S., Manns, G., Saunders, J., Wang, W., Pollock, L., and Soffa, M. L. A statistics-based performance testing methodology for cloud applications.

In Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (New York, NY, USA, 2019), ESEC/FSE 2019, Association for Computing Machinery, p. 188–199.

[16] Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., and Epema, D. H. The grid workloads archive. Future Generation Computer
Systems 24, 7 (2008), 672–686.

[17] Iosup, A., Yigitbasi, N., and Epema, D. On the performance variability of production cloud services. In 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (2011), IEEE, pp. 104–113.

[18] Kakarla, S. K. R., Tang, A., Beckett, R., Jayaraman, K., Millstein, T., Tamir, Y., and Varghese, G. Finding network misconfigurations by

automatic template inference. In 17th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 20) (2020), pp. 999–1013.
[19] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and Peterson, A. S. Feature-oriented domain analysis (foda) feasibility study. Tech. rep.,

Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, 1990.

[20] Karimireddy, S. P., Koloskova, A., Stich, S. U., and Jaggi, M. Efficient greedy coordinate descent for composite problems. In The 22nd International
Conference on Artificial Intelligence and Statistics (2019), PMLR, pp. 2887–2896.

[21] Krishna, R., Tang, C., Sullivan, K., and Ray, B. Conex: Efficient exploration of big-data system configurations for better performance. IEEE Trans.
on Software Eng. (2020).

[22] Lu, H., Freund, R., and Mirrokni, V. Accelerating greedy coordinate descent methods. In International Conference on Machine Learning (2018),

PMLR, pp. 3257–3266.

[23] Makrani, H. M., Sayadi, H., Nazari, N., Dinakarrao, S. M. P., Sasan, A., Mohsenin, T., Rafatirad, S., and Homayoun, H. Adaptive performance

modeling of data-intensive workloads for resource provisioning in virtualized environment. ACM Trans. Model. Perform. Eval. Comput. Syst. 5, 4
(Mar. 2021).

[24] Maricq, A., Duplyakin, D., Jimenez, I., Maltzahn, C., Stutsman, R., and Ricci, R. Taming performance variability. In 13th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 18) (2018), pp. 409–425.

[25] Masanet, E., Shehabi, A., Lei, N., Smith, S., and Koomey, J. Recalibrating global data center energy-use estimates. Science 367, 6481 (2020), 984–986.

Manuscript submitted to ACM

https://www.first.org/cvss/

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

30 Sanjeev Sondur and Krishna Kant

[26] Milborrow, S., Hastie, T., and Tibshirani, R. Earth: multivariate adaptive regression spline models, 2014.

[27] Moradi, H., Wang, W., and Zhu, D. Online performance modeling and prediction for single-vm applications in multi-tenant clouds. IEEE
Transactions on Cloud Computing (2021).

[28] Nair, V., Menzies, T., Siegmund, N., and Apel, S. Using bad learners to find good configurations. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering (2017), pp. 257–267.

[29] Nair, V., Menzies, T., Siegmund, N., and Apel, S. Faster discovery of faster system configurations with spectral learning. Automated Software
Engineering 25, 2 (2018), 247–277.

[30] Nair, V., Yu, Z., Menzies, T., Siegmund, N., and Apel, S. Finding faster configurations using flash. IEEE Transactions on Software Engineering 46, 7
(2018), 794–811.

[31] Önnberg, F. Software configuration management: A comparison of chef, cfengine and puppet, 2012.

[32] Papadopoulos, A. V., Ali-Eldin, A., Arzén, K.-E., Tordsson, J., and Elmroth, E. Peas: A performance evaluation framework for auto-scaling

strategies in cloud applications. ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS) 1, 4 (2016), 1–31.
[33] Pereira, J. A., Martin, H., Acher, M., Jézéqel, J.-M., Botterweck, G., and Ventresqe, A. Learning software configuration spaces: A systematic

literature review. arXiv preprint arXiv:1906.03018 (2019).
[34] Plan, Y., and Vershynin, R. The generalized lasso with non-linear observations. IEEE Transactions on Information Theory 62, 3 (2016), 1528–1537.
[35] Reiss, C., Wilkes, J., and Hellerstein, J. L. Google cluster-usage traces: format+ schema. Google Inc., White Paper (2011), 1–14.
[36] Shen, S., Van Beek, V., and Iosup, A. Statistical characterization of business-critical workloads hosted in cloud datacenters. In 2015 15th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (2015), IEEE, pp. 465–474.

[37] Siegmund, N., Grebhahn, A., Apel, S., and Kastner, C. Performance-influence models for highly configurable systems. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering (2015), pp. 284–294.

[38] Sondur, S., and Kant, K. Towards automated configuration of cloud storage gateways: A data driven approach. In International Conference on
Cloud Computing (2019), Springer, pp. 192–207.

[39] Sondur, S., Kant, K., Vucetic, S., and Byers, B. Storage on the edge: Evaluating cloud backed edge storage in cyberphysical systems. In 2019 IEEE
16th International Conference on Mobile Ad Hoc and Sensor Systems (MASS) (2019), pp. 362–370.

[40] Sondur, S., Shankar, G., and Kant, K. CHeSS: A Configuration Health Scoring System and Its Application to Network Devices. In 2020 23rd
Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN) (2020), pp. 250–257.

[41] Tateishi, S., Matsui, H., and Konishi, S. Nonlinear regression modeling via the lasso-type regularization. Journal of statistical planning and
inference 140, 5 (2010), 1125–1134.

[42] Theisen, C., Herzig, K., Morrison, P., Murphy, B., and Williams, L. Approximating attack surfaces with stack traces. In 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering (2015), vol. 2, IEEE, pp. 199–208.

[43] Tibshirani, R. J., et al. The lasso problem and uniqueness. Electronic Journal of statistics 7 (2013), 1456–1490.

[44] Velez, M., Jamshidi, P., Sattler, F., Siegmund, N., Apel, S., and Kästner, C. Configcrusher: towards white-box performance analysis for

configurable systems. Automated Software Engineering (2020), 1–36.

[45] Venkataraman, S., Yang, Z., Franklin, M., Recht, B., and Stoica, I. Ernest: Efficient performance prediction for large-scale advanced analytics.

In 13th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 16) (2016), pp. 363–378.
[46] Wang, Q., Zhang, S., Kanemasa, Y., Pu, C., Palanisamy, B., Harada, L., and Kawaba, M. Optimizing n-tier application scalability in the cloud: A

study of soft resource allocation. ACM Trans. Model. Perform. Eval. Comput. Syst. 4, 2 (June 2019).
[47] Wei, L., Foh, C. H., He, B., and Cai, J. Towards efficient resource allocation for heterogeneous workloads in iaas clouds. IEEE Transactions on Cloud

Computing 6, 1 (2015), 264–275.
[48] Westermann, D., Happe, J., Krebs, R., and Farahbod, R. Automated inference of goal-oriented performance prediction functions. In Proceedings

of the 27th IEEE/ACM International Conference on Automated Software Engineering (2012), pp. 190–199.

[49] Xu, T., Jin, L., Fan, X., Zhou, Y., Pasupathy, S., and Talwadker, R. Hey, you have given me too many knobs!: Understanding and dealing

with over-designed configuration in system software. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (2015),

pp. 307–319.

[50] Xu, T., Jin, X., Huang, P., Zhou, Y., Lu, S., Jin, L., and Pasupathy, S. Early detection of configuration errors to reduce failure damage. In 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16) (2016), pp. 619–634.

[51] Xu, T., and Zhou, Y. Systems approaches to tackling configuration errors: A survey. ACM Computing Surveys (CSUR) 47, 4 (2015), 70.
[52] Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L. N., and Pasupathy, S. An empirical study on configuration errors in commercial and

open source systems. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles (2011), SOSP ’11.

[53] Zaman, S., and Grosu, D. A combinatorial auction-based mechanism for dynamic vm provisioning and allocation in clouds. IEEE Transactions on
Cloud Computing 1, 2 (2013), 129–141.

[54] Zhang, Y., Guo, J., Blais, E., and Czarnecki, K. Performance prediction of configurable software systems by fourier learning (t). In 2015 30th
IEEE/ACM International Conference on Automated Software Engineering (ASE) (2015), IEEE, pp. 365–373.

[55] Zhu, Y., Liu, J., Guo, M., Bao, Y., Ma, W., Liu, Z., Song, K., and Yang, Y. Bestconfig: tapping the performance potential of systems via automatic

configuration tuning. In Proceedings of the 2017 Symposium on Cloud Computing (2017), pp. 338–350.

Manuscript submitted to ACM

	Abstract
	1 Introduction and Motivation
	1.1 Problem of Configuration Management
	1.2 Motivation for Our Work

	2 Configuration Health Scoring System
	2.1 Quantification of Health Score
	2.2 Configuration Specification
	2.3 Challenges in Assigning Scores
	2.4 How can CHI help? Some preliminary work
	2.5 Aggregation of CHI Scores
	2.6 Exploiting Domain Knowledge for Performance CHI
	2.7 Limitations of Data-driven approach
	2.8 Research Goal

	3 Solution Design
	3.1 CHI Framework
	3.2 Estimating Health Index From Configuration Data
	3.3 Computing CHI
	3.4 CHI Compute Unit Design
	3.5 Identifying Unimportant CVs
	3.6 CHI runtime & Retrain the Model

	4 Experiments and Empirical Data
	4.1 Data Sets and Hyperparameters
	4.2 Data-set Characteristics

	5 Detailed Results
	5.1 Discovering the Influence of configuration objects
	5.2 Behavior with "New" Configurations
	5.3 CHI for "BitBrains" Data
	5.4 CHI for Enterprise data sets

	6 Discussion: Segmented Regression (MARS & LARS)
	6.1 Results: Segmented Regression (MARS & LARS)

	7 Current State of the Art and Challenges
	7.1 CHI vs. State of Art.

	8 Conclusions
	References

